• Title/Summary/Keyword: frequency response

Search Result 5,480, Processing Time 0.03 seconds

Experimental Design of Disturbance Compensation Control to Improve Stabilization Performance of Target Aiming System (표적지향 시스템의 안정화 성능 향상을 위한 실험적 외란 보상 제어기 설계)

  • Lim Jae-Keun;Kang Min-Sig;Lyou Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.897-905
    • /
    • 2006
  • This study considers an experimental design of disturbance compensation control to improve stabilization performance of main battle tanks. An adaptive non-parametric design technique based on the Filtered-x Least Mean Square(FXLMS) algorithm is applied in the consideration of model uncertainties. The optimal compensator is designed by two-step design procedures: determination of frequency response function of the disturbance compensator which can cancel the disturbance of series of single harmonics by using the FXLMS algorithm and determination of the compensator polynomial which can fit the frequency response function obtained in the first step optimally by using a curve fitting technique. The disturbance compensator is applied to a simple experimental gun-torsion bar-motor system which simulates gun driving servo-system. Along with experimental results, the feasibility of the proposed technique is illustrated. Experimental results demonstrate that the proposed control reduces the standard deviation of stabilization error to 47.6% that by feedback control alone. The directional properties of the FXLMS Algorithm such as the direction of convergence and its convergence speed are also verified experimentally.

Optimum Structural Design of a Triaxial Load Cell for Wind Tunnel Test (풍동용 3 축 로드셀의 구조최적설계)

  • Lee, Jae-Hoon;Song, Chang-Kon;Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.226-232
    • /
    • 2011
  • In this study, an optimized design of a triaxial load cell has been developed by the use of finite element analysis, design of experiment and response surface method. The developed optimal design was further validated by both stress-strain analysis and natural vibration analysis under an applied load of 30 kgf. When vertical, horizontal, and axial loads of 30 kgf were applied to the load cell with the optimal design, the calculated strains were satisfied with the required strain range of $500{\times}10^{-6}{\pm}10%$. The natural vibration analysis exhibited that the fundamental natural frequency of the optimally designed load cell was 5.56 kHz and higher enough than a maximum frequency of 0.17 kHz which can be applied to the load cell for wind-tunnel tests. The satisfactory sensitivity in all triaxial directions also suggests that the currently proposed design of the triaxial load cell enables accurate measurements of the multi-axial forces in wind-tunnel tests.

Shock Vibration Control of Hard-Disk Drive Using Coupled Shock Spectrum Analysis in Time-Frequency Domain (시간-주파수 영역에서의 연성 충격 스펙트럼 분석을 통한 하드디스크 드라이브의 충격진동 제어 (현장개발사례: SAMSUNG HDD 'SPINPOINT V40/P40 SERIES'))

  • Han, Yun-Sik;Kang, Seong-Woo;Oh, Dong-Ho;Hwang, Tae-Yeon;Son, Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1111-1116
    • /
    • 2001
  • A transient T-F(time-frequency) signal processing technique is applied to a tilt drop and a linear shock test rigs for identification of shock characteristics of hard disk drive (HDD). The T-F technique essentially tracks the shock characteristics of pivot point response as well as head slap and lift-off phenomena. From the T-F analysis result, the shock characteristic in HDD is modeled by the two degree of freedom coupled-dynamic system, which consists of actuator arm and suspension. As shock designing tool, the maximax shock response spectrum is employed for prediction of shock performance. Finally, the shock control technique is tested with newly designed actuator arm and suspension. Experimental head slap test result shows that the shock performance is much higher with the new shockproof designed model than the current model

  • PDF

Effectiveness Measurement of TV Advertisement for Fashion Goods with EEG and Affective Responses as Determined by the Types of Appeal (뇌파와 감정반응 평가를 통한 패션제품의 TV 광고효과 연구)

  • Choi Ju-Young;Kim Mi-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.9_10 s.146
    • /
    • pp.1230-1240
    • /
    • 2005
  • The purpose of this study was to apply a scientific and systematic method for assessing fashion goods' TV ads effects by EEG and questionnaires as determined by the type of ads appeal. Ads stimulants used in the survey were limited to underwear and sportswear that were advertised during $2000{\sim}2002$ on TV: 4 information-transferring and 4 emotion-evoking ads were used. Subjects were thirty healthy male and female college students. EEG was extracted from six lobes and the recorded EEG was analyzed by the range of frequency of ${\theta},\;{\alpha}\;and\;{\beta}$ waves. Data were analyzed by SPSS 11.0 with reliability test, $x^2$-analysis, t-test and frequency analysis. The emotion-evoking ads showed higher scores in memory, recall and attitude towards the ads. The responses of ${\theta}\;and\;{\alpha}$ wave were active throughout the ads but the response of ${\beta}$ wave was not. The results by the survey and the EEG test showed high similarities, indicating the EEG tests could be used as the supplementary tool for measuring ads effects.

Vehicle Interior Noise Analysis Using Frequency Response Function Based Substructural Method (주파수응답함수의 부분구조합성 법을 이용한 차 실내소음 예측)

  • 허덕재;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.5-12
    • /
    • 2001
  • This paper presents the simulation methodology of the interior noise of vehicle using the frequency response function based hybrid modeling of the system which consists of multi-subsystem models obtained by the test or analysis. The complex systems such as a trimmed body of high modal density and a powertrain were modeled by using experimental data, and a sub-frame of a vehicle of low modal density was modeled by finite element data. Modeling of the whole system was executed and validated in the two stages. The first stave is combining the trimmed body and the sub-frame, and the second stage is attaching the powertrain, which is a exciting source, to the combined model of the first stage. The input force to the system was modeled as an equivalent force in the virtual space, which was obtained from impedance method using the FRFs of the powertrain and the responses. The interior noise predicted by the proposed method was very close to the direct measurement, which showed feasibility of the proposed modeling procedure. Since the methodology is easily applied to both the transfer path analysis of structure-borne noise and the analysis of noise contribution of a sub-system, it is expected to be a strong tool for design change of a vehicle in the earlier stare.

  • PDF

Vibration Analysis for a Gimbal Structure of a Micro Wave Seeker(I) : Experimental Modal Analysis (마이크로 웨이브 탐색기의 김발 구조물 진동해석(I) : 실험모드해석)

  • Lee, Sock-Kyu;Chang, Young-Bae;Lee, Jin-Koo;Kwon, Byung-Hyun;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.508-513
    • /
    • 2000
  • Micro wave seeker detects micro wave signal reflecting from a object and modifies the angle of a antenna in the direction of a reflecting signal. Gimbal structure makes a motion in the direction of an elevation axis and an azimuth axis and change the direction of a missile toward a object. As before, Micro wave seeker is a important part of a missile. Especially, gimbal structure is designed to resist a external force generated by a strong propelling power. For that reason, it is essential to analyze a vibration feature of gimbal structure. In this paper, we analyze dynamic characteristics of a gimbal structure of a micro wave seeker. And we measure frequency response functions of a gimbal structure in order to investigate the effect of a pre-load on bearing.

  • PDF

Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method (스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석)

  • Lee, Yung-Koo;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

Dynamic Analysis of Steel Box Girder Bridge installed with Skid Proof Pavement (미끄럼방지포장을 설치한 강상자형 교량의 동적해석)

  • Park, Pyoung Deuk;Chung, Jae Hoon;Yhim, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.329-337
    • /
    • 2002
  • The skid proof pavement is used for safety driving on curved bridges and high level roads. This study analyzed the effect of skid proof pavement on the bridge using actual spot test and computer analysis. In the actual spot test, the natural frequency and dynamic deflection of steel box girder bridges were measured before and after skid proof pavement. Likewise, in the computer analysis, the dynamic response of the finite element model was evaluated. The model was based on real steel box girder bridge according to the skid proof pavement. The analyzed results provide basic data on the effect of skid proof pavement on road structure.

Metamodel based multi-objective design optimization of laminated composite plates

  • Kalita, Kanak;Nasre, Pratik;Dey, Partha;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.301-310
    • /
    • 2018
  • In this paper, a multi-objective multiparameter optimization procedure is developed by combining rigorously developed metamodels with an evolutionary search algorithm-Genetic Algorithm (GA). Response surface methodology (RSM) is used for developing the metamodels to replace the tedious finite element analyses. A nine-node isoparametric plate bending element is used for conducting the finite element simulations. Highly accurate numerical data from an author compiled FORTRAN finite element program is first used by the RSM to develop second-order mathematical relations. Four material parameters-${\frac{E_1}{E_2}}$, ${\frac{G_{12}}{E_2}}$, ${\frac{G_{23}}{E_2}}$ and ${\upsilon}_{12}$ are considered as the independent variables while simultaneously maximizing fundamental frequency, ${\lambda}_1$ and frequency separation between the $1^{st}$ two natural modes, ${\lambda}_{21}$. The optimal material combination for maximizing ${\lambda}_1$ and ${\lambda}_{21}$ is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand the effect of each parameter on the desired response parameters.

Identification of Damping Matrix for a Steel Bar by the Genetic Algorithm (유전알고리즘에 의한 강봉의 감쇠행렬 산출법)

  • Park, Sok-Chu;Park, Young-Bum;Park, Kyoung-Il;Je, Hye-Kwang;Yi, Geum-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.271-277
    • /
    • 2011
  • An identification method of the structural damping matrix for a steel bar by the genetic algorithm is proposed. Supposing the damping matrix were in proportion to the stiffness matrix, the proportional factors can be identified from the curve fitting of the experimental frequency response function(FRF) by the genetic algorithm. Applying the identified damping matrix to FEM of a beam model, the values of the objective function could be reduced to about 1/60 in comparison with conventional FEM model without damping. The damping matrices of some sub-structures which have large damping partly could be identified by the algorithm, and they could be used as some parts of the FEM model for a whole structure.