• Title/Summary/Keyword: frequency problem

Search Result 3,568, Processing Time 0.034 seconds

The Application of CSAMT to Deep-seated Coal Seams Exploration (심부 석탄층 탐사에 있어서 CSAMT 탐사법 적용)

  • Chung, Seung-Hwan;Kim, Jung-Ho;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 1990
  • Controlled source audio-frequency magnetotelluric (CSAMT) has the great advantage of efficient mapping resistivity distribution and relatively deep depth of investigation. Moreover, CSAMT may be regarded more attractive than audio-frequency magnetotelluric in the sense of the strong and controllable signal. However, it has the problem such as undershoot and/or near-field effect that is hard to be interpreted if the interpretation method of MT is directly applied. The problem arises from the existance of controlled source which makes CSAMT attractive. So the characteristics of CSAMT response should be thoroughly understood prior to interpretation stage. In this study, numerical modeling program for horizontally layered earth was developped for the interpretation of CSAMT field data. CSAMT field survey was run as a follow-up to resistivity dipole-dipole study over the same survey line at Bongmyung coal mine. The survey used a grounded dipole source 2 Km in length and located 7.5Km south in this study. A good agreement between field CSAMT data and calculated data was demonstrated even in geologically complex earth situations.

  • PDF

The transient and frequency response analysis using the multi-level system condensation in the large-scaled structural dynamic problem

  • Baek, Sungmin;Cho, Maenghyo
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.429-441
    • /
    • 2011
  • In large-scale problem, a huge size of computational resources is needed for a reliable solution which represents the detailed description of dynamic behavior. Recently, eigenvalue reduction schemes have been considered as important technique to resolve computational resource problems. In addition, the efforts to advance an efficiency of reduction scheme leads to the development of the multi-level system condensation (MLSC) which is initially based on the two-level condensation scheme (TLCS). This scheme was proposed for approximating the lower eigenmodes which represent the global behavior of the structures through the element-level energy estimation. The MLSC combines the multi-level sub-structuring scheme with the previous TLCS for enhancement of efficiency which is related to computer memory and computing time. The present study focuses on the implementation of the MLSC on the direct time response analysis and the frequency response analysis of structural dynamic problems. For the transient time response analysis, the MLSC is combined with the Newmark's time integration scheme. Numerical examples demonstrate the efficiency of the proposed method.

Dynamic response of a Timoshenko beam on a tensionless Pasternak foundation

  • Coskun, Irfan;Engin, Hasan;Tekin, Ayfer
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.489-507
    • /
    • 2011
  • The dynamic response of a Timoshenko beam on a tensionless Pasternak foundation is investigated by assuming that the beam is subjected to a concentrated harmonic load at its middle. This action results in the creation of lift-off regions between the beam and the foundation that effect the character of the response. Although small displacements for the beam and the foundation are assumed, the problem becomes nonlinear since the contact/lift-off regions are not known at the outset. The governing equations of the beam, which are coupled in deflection and rotation, are obtained in both the contact and lift-off regions. After removing the coupling, the essentials of the problem (the contact regions) are determined by using an analytical-numerical method. The results are presented in figures to demonstrate the effects of some parameters on the extent of the contact lengths and displacements. The results are also compared with those of Bernoulli-Euler, shear, and Rayleigh beams. It is observed that the solution is not unique; for a fixed value of the frequency parameter, more than one solution (contact length) exists. The contact length of the beam increases with the increase of the frequency and rotary-inertia parameters, whereas it decreases with increasing shear foundation parameter.

A Study on the ZP-OFDM System Robust to Symbol Timing Offset (심볼 타이밍 옵셋에 강건한 ZP-OFDM 시스템에 관한 연구)

  • Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1042-1046
    • /
    • 2011
  • In this paper, we analyze the STO (Symbol Timing Offset) problem in conventional ZP-OFDM (Zero Padding-Orthogonal Frequency Division Multiplexing) systems and propose a robust ZP-OFDM system with bi-directional overlap-add scheme to overcome the problem. The proposed ZP-OFDM system is able to preserve the orthogonality between subcarriers and reduce the interference from other ZP-OFDM symbols due to the BOA scheme, which exploits both ZP intervals of the previous and the current ZP-OFDM symbols, even though serious STOs result from inaccurate symbol timing synchronization. Simulation results verify that the proposed ZP-OFDM system is superior to the conventional ZP-OFDM system.

Design of Digital Governor Controller for Frequency Stability Improvement (주파수 안정도 개선을 위한 디지털 조속기 제어기 개발)

  • Lee, Sang-Hun;Choi, Sang-Gyu;Lee, Hwa-Chun;Song, Seung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.64-72
    • /
    • 2012
  • The interest in wind power generation area such as developing and operating wind-diesel pilot complex in remote and island regions that have difficulty in having power plant and connecting to power system is growing rapidly in the world. We have installed and researched the hybrid system in Sekgok Pilot Complex to meet the new generation system. From the monitored data of the system, the performance of each diesel power plant is outstanding. However, step out problem was detected with respect to load sharing and synchronization with decentralized power supply. An advanced controller design having better response time and stability is needed to solve such problem. In this paper, we proposed the algorithm, through digital controller of Governor, which is applied to hybrid system. As a result, we obtained the stable frequency value in variable loading conditions. Also, we proved the advanced response time and stability through the simulation and experiment by applying additional current signal to the control algorithm.

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.

A New Gate Pulse Generating Method of 12-Pulse Phase Controlled Rectifier for HVDC (HVDC용 12-펄스 위상제어정류기의 새로운 게이트 펄스 발생 기법)

  • Ahn, Jong-Bo;Kim, Kook-Hun;Lee, Jong-Moo;Lee, Ki-Do
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.139-141
    • /
    • 2000
  • High voltage direct current(HVDC) transmission system uses the phase controlled rectifier triggered by means of IPC(individual phase control) or EPC(equidistant pulse control). Most HVDC system has adopted EPC method that can solve the harmonic instability problem of IPC method in weak power system. But EPC has inherent indirect synchronizing problem requiring the closed loop control. This paper presents the new gate pulse generating method for 12-pulse HVDC converter, which combines IPC with EPC. Simulation and test results are presented. The basic concept is that it generates the gating pulse for 12-pulse converter by synthesizing the internal phase reference using the frequency and phase information of a sin91e phase voltage. To ensure the reliability of the external phase input, Potential transformer that detects the phase voltage has redundancy. Using fault detecting algorithm the healthy input is always guaranteed. And the frequency compensation function was reinforced.

  • PDF

A Study on the Vibration Analysis of a Power Transmission Converter by Substructure Synthesis Method (부분구조합성법에 의한 동력전달 변화기의 진동해석에 관한 연구)

  • 박석주;왕지석;박성현;오창근;박영철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.52-57
    • /
    • 2000
  • This study intends to reduce the weight of structure without changing the dynamic characteristics. At first, the Vibration analysis by the Substructure Synthesis Method and FFM using the ANSYS are performed for the engine speed converter to confirm the reliability of the analyzing tools. Weight minimization is performed by the Sensitivity Analysis and the Optimum Structural Modification. To decrease the converter weight ideally, the parts with low sensitivity are to be cut mainly, and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with high sensitivity. As the unique mathematical solution for the homogeneous problem(i.e. 0 object function problem) does not exist, the converter is redesigned with much thinner initial thickness. The goal of this study is to recover the dynamic characteristics of redesigned structure to those of the original one. To say in the other words, the modified structure has the same dynamic characteristics and the more lighter weight to compare with the original one.

  • PDF

Resource Allocation for Cooperative Relay based Wireless D2D Networks with Selfish Users

  • Niu, Jinxin;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1996-2013
    • /
    • 2015
  • This paper considers a scenario that more D2D users exist in the cell, they compete for cellular resources to increase their own data rates, which may cause transmission interference to cellular users (CU) and the unfairness of resource allocation. We design a resource allocation scheme for selfish D2D users assisted by cooperative relay technique which is used to further enhance the users' transmission rates, meanwhile guarantee the QoS requirement of the CUs. Two transmission modes are considered for D2D users: direct transmission mode and cooperative relay transmission mode, both of which reuses the cellular uplink frequency resources. To ensure the fairness of resource distribution, Nash bargaining theory is used to determine the transmission mode and solve the bandwidth allocation problem for D2D users choosing cooperative relay transmission mode, and coalition formation game theory is used to solve the uplink frequency sharing problem between D2D users and CUs through a new defined "Selfish order". Through theoretical analysis, we obtain the closed Nash bargaining solution under CUs' rate constraints, and prove the stability of the formatted coalition. Simulation results show that the proposed resource allocation approach achieves better performance on resource allocation fairness, with only little sacrifice on the system sum rates.

A Study on the Vibration Analysis of a Power Transmission by Substructure Synthesis Method (부분구조합성에 의한 동력전달기의 진동해석에 관한 연구)

  • 박석주;박성현;박영철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.161-166
    • /
    • 2001
  • This study intends to reduce the weight of structure without changing the dynamic characteristics. At first, the Vibration analyses by the Substructure Synthesis Method and FEM using the ANSYS are performed for the engine speed converter to confirm the reliability of the analyzing tools. Weight minimization is performed by the Sensitivity Analysis and the Optimum Structural Modification. To decrease the converter weight ideally, the parts with low sensitivity are to be cut mainly, and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with high sensitivity. As the unique mathematical solution for the homogeneous problem( i.e. 0 object function problem) does not exist, the converter is redesigned with much thinner initial thickness. The goal of this study is to recover the dynamic characteristics of redesigned structure to those of the original one. To say in the other words, the modified structure has the same dynamic characteristics and the more lighter weight to compare with the original one. In this analysis, the modification was performed with the redesigned initial thickness of 60 mm and 70 mm. And the numbers of the interesting natural frequencies are 1, 2, 4 respectively. Consequently 27% of weight reduction effects were earned.

  • PDF