• Title/Summary/Keyword: frequency problem

Search Result 3,569, Processing Time 0.026 seconds

Mining Search Keywords for Improving the Accuracy of Entity Search (엔터티 검색의 정확성을 높이기 위한 검색 키워드 마이닝)

  • Lee, Sun Ku;On, Byung-Won;Jung, Soo-Mok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.451-464
    • /
    • 2016
  • Nowadays, entity search such as Google Product Search and Yahoo Pipes has been in the spotlight. The entity search engines have been used to retrieve web pages relevant with a particular entity. However, if an entity (e.g., Chinatown movie) has various meanings (e.g., Chinatown movies, Chinatown restaurants, and Incheon Chinatown), then the accuracy of the search result will be decreased significantly. To address this problem, in this article, we propose a novel method that quantifies the importance of search queries and then offers the best query for the entity search, based on Frequent Pattern (FP)-Tree, considering the correlation between the entity relevance and the frequency of web pages. According to the experimental results presented in this paper, the proposed method (59% in the average precision) improved the accuracy five times, compared to the traditional query terms (less than 10% in the average precision).

Demonstration of MEMS Inductor on the LTCC Substrate (LTCC 기판위에 MEMS 인덕터 특성 연구)

  • Park, Je-Yung;Cha, Doo-Yeol;Kim, Sung-Tae;Kang, Min-Suk;Kim, Jong-Hee;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1049-1055
    • /
    • 2007
  • Lots of integration work has been done in order to miniaturize the devices for communication. To do this work, one of key work is to get miniaturized inductor with high Q factor for RF circuitry. However, it is not easy to get high Q inductor with silicon based substrate in the range of GHz. Although silicon is well known for its good electrical and mechanical characteristics, silicon has many losses due to small resistivity and high permittivity in the range of high frequency. MEMS technology is a key technology to fabricate miniaturized devices and LTCC is one of good substrate materials in the range of high frequency due to its characteristics of high resistivity and low permittivity. Therefore, we proposed and studied to fabricate and analyze the inductor on the LTCC substrate with MEMS fabrication technology as the one of solutions to overcome this problem. We succeeded in fabricating and characterizing the high Q inductor on the LTCC substrate and then compared and analyzed the results of this inductor with that on a silicon and a glass substrate. The inductor on the LTCC substrate has larger Q factor value and inductance value than that on a silicon and a glass substrate. The values of Q factor with the LTCC substrate are 12 at 3 GHz, 33 at 6 GHz, 51 at 7 GHz and the values of inductance is 1.8, 1.5, 0.6 nH in the range of 5 GHz on the silicon, glass, and LTCC substrate, respectively.

Detection Technique of Partial Discharge by a Capacitive Probe in Cast-resin Transformers (몰드변압기에서 용량성 프로브에 의한 부분방전 검출 기술)

  • Jung, Kwang-Seok;Park, Dae-Won;Cha, Hyeon-Kyu;Cha, Sang-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.319-324
    • /
    • 2011
  • This paper dealt with a partial discharge (PD) detection method for insulation diagnosis in cast-resin transformers. To detect PD pulse, a planar-capacitive probe was designed and fabricated. The probe has no insulation problem and can be installed on cast-resin transformers even in operation since it does not connect with high voltage conductor. The PD measurement system consists of the capacitive probe, a coupling network of 100 [kHz] low-cutoff frequency, and an amplifier with a gain of 40 [dB] and a frequency bandwidth of 500 [Hz]~45 [MHz]. A plane-needle and a plane-plane electrode system were fabricated to simulate insulation defects in a cast-resin transformer. Sensitivity of the PD measurement system, which is evaluated by a standard calibrator was 0.35 [mV/pC] for positive and 0.45 [mV/pC] for negative, respectively. The PD detection by the capacitive probe was less sensitive than that by a coupling capacitor according to IEC 60270, but we could analyze the magnitude and the phase distribution of PD pulse.

Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method

  • Zhang, Feng-Liang;Ni, Yi-Qing;Ni, Yan-Chun;Wang, You-Wu
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.209-230
    • /
    • 2016
  • The Canton Tower is a high-rise slender structure with a height of 610 m. A structural health monitoring system has been instrumented on the structure, by which data is continuously monitored. This paper presents an investigation on the identified modal properties of the Canton Tower using ambient vibration data collected during a whole day (24 hours). A recently developed Fast Bayesian FFT method is utilized for operational modal analysis on the basis of the measured acceleration data. The approach views modal identification as an inference problem where probability is used as a measure for the relative plausibility of outcomes given a model of the structure and measured data. Focusing on the first several modes, the modal properties of this supertall slender structure are identified on non-overlapping time windows during the whole day under normal wind speed. With the identified modal parameters and the associated posterior uncertainty, the distribution of the modal parameters in the future is predicted and assessed. By defining the modal root-mean-square value in terms of the power spectral density of modal force identified, the identified natural frequencies and damping ratios versus the vibration amplitude are investigated with the associated posterior uncertainty considered. Meanwhile, the correlations between modal parameters and temperature, modal parameters and wind speed are studied. For comparison purpose, the frequency domain decomposition (FDD) method is also utilized to identify the modal parameters. The identified results obtained by the Bayesian method, the FDD method and a finite element model are compared and discussed.

Free vibration analysis of large sag catenary with application to catenary jumper

  • Klaycham, Karun;Nguantud, Panisara;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.67-86
    • /
    • 2020
  • The main goal of this study is to investigate the free vibration analysis of a large sag catenary with application to the jumper in hybrid riser system. The equation of motion is derived by using the variational method based on the virtual work principle. The finite element method is applied to evaluate the numerical solutions. The large sag catenary is utilized as an initial configuration for vibration analysis. The nonlinearity due to the large sag curvature of static configuration is taken into account in the element stiffness matrix. The natural frequencies of large sag catenary and their corresponding mode shapes are determined by solving the eigenvalue problem. The numerical examples of a large sag catenary jumpers are presented. The influences of bending rigidity and large sag shape on the free vibration behaviors of the catenary jumper are provided. The results indicate that the increase in sag reduces the jumper natural frequencies. The corresponding mode shapes of the jumper with large sag catenary shape are comprised of normal and tangential displacements. The large sag curvature including in the element stiffness matrix increases the natural frequency especially for a case of very large sag shape. Mostly, the mode shapes of jumper are dominated by the normal displacement, however, the tangential displacement significantly occurs around the lowest point of sag. The increase in degree of inclination of the catenary tends to increase the natural frequencies.

Dynamic Characteristics of Pressure Propagation According to Boundary Condition Changes in a Transmission Line (경계조건변화에 따른 동력전달관로의 동특성)

  • 나기대;유영태;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.75-82
    • /
    • 2002
  • Design for a quiet operation of fluid power system requires the understanding of noise and vibration characteristics of the system. It's not easy to analyze noise problem in hydraulic cylinder used in typical actuator Because they've got complex fluid dynamics. One of the fundamental problems associated with the hydraulic system is the pulsating flow in pipe lines, which can be tackled by the analysis under simplifying assumptions. The present study focuses on theoretic analysis and experimental study on the dynamics of laminar pulsating flow in a circular pipe. We analyze the propagation characteristics of the pressure pulse within a hydraulic pipe line taking into account the pulsating flow frequency variation. We also measure instantaneous pressure pulses within pipe line to identify the transfer functions. We conduct series of experiments to investigate the propagation characteristics of pressure pulse for various pressure of pulsating flow. The working fluid of the present study is ISO VG46 and the temperature ranges from 20 to $60^{\circ}$ with normal pressure at 4000kPa. The flow rate is measured by using an ultrasonic flow meter. Pressures at fixed upstream and downstream positions are measured concurrently. The electric signals of the pressure sensor are stored and analyzed using a system analyzer(PKE 983 series). The frequency is varied in the range of 10~500Hz. The Reynolds number is kept below 2,000. In the present study, boundary condition was varied by installing a surge tank and an orifice at the end of pipe. Experimental and theoretical results were compared each other under various boundary conditions.

A 10Gb/s Analog Adaptive Equalizer for Backplanes (백플레인용 10Gbps 아날로그 어댑티브 이퀄라이저)

  • Yoo, Kwi-Sung;Han, Gun-Hee;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.34-39
    • /
    • 2007
  • Serial links via backplane channels suffer from severe signal integrity problems which are normally caused by channel imperfections, such as flat loss, frequency-dependent loss, reflection, etc. Particularly, the frequency-dependent loss causes ISI(Inter-Symbol-Interference) at signal waveforms. Therefore, adaptive equalizing techniques have been exploited in many products to facilitate the ISI problem. In this paper, we present an analog adaptive equalizer circuit designed in a $0.18{\mu}m$ CMOS process. It achieves 10Gb/s data transmission through a long 34-inch backplane channel(or transmission line). The post-layout simulations demonstrate $8ps_{p-p}$ jitter with 10mW power dissipation. The core of the adaptive equalizer occupies the area of $0.56mm^2$.

Current Effect on the Motion and Drift Force of Cylinders Floating in Waves (주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響))

  • Sei-Chang,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

A Study on the Sloshing of Cargo Tanks Including Hydroelastic Effects (유탄성을 고려한 탱크내 슬로싱에 대한 연구)

  • Dong-Yeon Lee;Hang-Shoon Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.27-37
    • /
    • 1998
  • The sloshing is very important in a safe transport of the liquid cargo by a ship. With the increasing number of supertanker and LNG carriers, this problem has become increasingly more important. In order to study the magnitude and characteristics of impact pressures due to sloshing, experiments ware performed with a rectangular tank and compared with numerical results. Structural responses of tank wall under impulsive pressures were measured. Structural vibrations induced by the sloshing load were analysed by including hydroelastic erects in terms of added mass and damping. To check the validity of the numerical model, the natural frequencies of plate in air and water were compared with measurements, and a good agreement was found. In the case that a plate vibrates under impulsive loads, the pressure on the flexible plate is larger than that on the rigid plate without hydroelastic effects, which was confirmed experimentally. The frequency of oscillatory pressure as well as accel%pion coincides with the natural frequency of plate in water.

  • PDF

A Risk Quantification Study for Accident Causes on Building Construction Site by Applying Probabilistic Forecast Concept (확률론적 추정 개념을 적용한 건설 공사 현장의 사고원인별 리스크 정량화 연구)

  • Yu, Yeong-Jin;Son, Kiyoung;Kim, Taehui;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.287-294
    • /
    • 2017
  • Recently the construction project is becoming large-sized, complicated, and modernize. This has increased the uncertainty of construction risk. Therefore, studies should be followed regarding scientifically identifying the risk factors, quantifying the frequency and severity of risk factors in order to develop a model that can quantitatively evaluate and manage the risk for response the increased risk in construction. To address the problem, this study analyze the probability distribution of risk causes, the probability of occurrence and frequency of the specific risk level through Monte Carlo simulation method based on the accident data caused at construction sites. In the end, this study derives quantitative analysis by analyzing the amount of risk and probability distributions of accident causes. The results of this study will be a basis for future quantitative risk management models and risk management research.