• Title/Summary/Keyword: frequency of drought

Search Result 242, Processing Time 0.024 seconds

Development of daily spatio-temporal downscaling model with conditional Copula based bias-correction of GloSea5 monthly ensemble forecasts (조건부 Copula 함수 기반의 월단위 GloSea5 앙상블 예측정보 편의보정 기법과 연계한 일단위 시공간적 상세화 모델 개발)

  • Kim, Yong-Tak;Kim, Min Ji;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study aims to provide a predictive model based on climate models for simulating continuous daily rainfall sequences by combining bias-correction and spatio-temporal downscaling approaches. For these purposes, this study proposes a combined modeling system by applying conditional Copula and Multisite Non-stationary Hidden Markov Model (MNHMM). The GloSea5 system releases the monthly rainfall prediction on the same day every week, however, there are noticeable differences in the updated prediction. It was confirmed that the monthly rainfall forecasts are effectively updated with the use of the Copula-based bias-correction approach. More specifically, the proposed bias-correction approach was validated for the period from 1991 to 2010 under the LOOCV scheme. Several rainfall statistics, such as rainfall amounts, consecutive rainfall frequency, consecutive zero rainfall frequency, and wet days, are well reproduced, which is expected to be highly effective as input data of the hydrological model. The difference in spatial coherence between the observed and simulated rainfall sequences over the entire weather stations was estimated in the range of -0.02~0.10, and the interdependence between rainfall stations in the watershed was effectively reproduced. Therefore, it is expected that the hydrological response of the watershed will be more realistically simulated when used as input data for the hydrological model.

Hydrologic Regime Alteration Analysis of the Multi-Purpose Dam by Indicators of Hydrologic Alterations (수문변화 지표법에 의한 다목적댐의 유량변화 분석)

  • Park, Bong-Jin;Kang, Ki-Ho;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.711-723
    • /
    • 2008
  • In this study, Hydrologic regime alterations(magnitude, magnitude and duration of annual extreme, frequency and duration of high and low pulse, rate and frequency of water condition changes, Range of Variability Approach) were analyzed by using Indicators of Hydrologic Alterations at the 11 major multi-purpose dam. The analysis result of the magnitude of monthly water conditions during drought season, inflow was $6.38m^3/sec{\sim}39.84m^3/sec$ and outflow was $20.36m^3/sec{\sim}49.43m^3/sec$, was increased $1.84%{\sim}200.98%$. The analysis result of the magnitude of monthly water conditions during flood season, inflow was from $79.06m^3/sec{\sim}137.12m^3/sec$ and outflow was from $65.32m^3/sec{\sim}80.16m^3/sec$, was decreased from $18.19%{\sim}40.39%$. The analysis result of the magnitude and duration of annual extreme, 1-day minimum was increased $82.86%{\sim}2,950%$, but 1-day maximum was decreased $34.78%{\sim}83.96%$. The analysis result of the frequency and duration of high and low pulse, low pulse count was decreased $29.67%{\sim}99.07%$ and high pulse count was also decreased $4.6%{\sim}92.35%$ after dam operation. Hydrograph rise rate was decreased $15.84%{\sim}79.31%$ and fall rate was $1.97%{\sim}107.10%$. RVA of 1-day minimum was increased $0.60{\sim}2.67$, also RVA of 1-day maximum was decreased $0.50{\sim}1.00$.

Relationship between Macrofungi Fruiting and Environmental Factors in Songnisan National Park (속리산 국립공원의 버섯발생과 환경요인과의 관계)

  • Park, Yong-Woo;Koo, Chang-Duck;Lee, Hwa-Yong;Ryu, Sung-Ryul;Kim, Tae-Heon;Cho, Young-Gull
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.657-679
    • /
    • 2010
  • Mushroom fruiting was investigated in pine and oak dominated forest stands in Songni National Park located in central Korea for six years from 2003 to 2008, in order to understand the relationship between mushroom diversity and the environmental factors, precipitation, temperature, soil moisture and vegetation. The most frequent fruiting families were those of ectomycorrhizal mushrooms, Tricholomataceae, Amanitaceae, Russulaceae, Cortinariaceae, and Boletaceae. The frequency of mushroom fruiting varied from 94 to 167 species per year, with July and August having the highest(13~90 species). Mushroom fruiting was positively correlated to precipitation(r=0.897), using Palmer Drought Severity Index for the long term period and Standard Precipitation Index for short term period. Soil moisture content also affected mushroom fruiting, with Lactarius chrysorrheus and Russula virescens fruiting only at soil moisture content higher than 20%. Positive correlation between mushroom fruiting and temperature was also noted(r=0.77), with optimum rates at $21{\sim}25^{\circ}C$. Tricholoma flayayirens, Amanita gymnopus, Lactarius piperatus, Inocybe asteropora and Xerocomus chrysenteron were able to fruit at temperatures higher than $25^{\circ}C$. However, Laccaria amethystea, Amanita virosa and Russula mariae fruited at relatively wide temperature range. The influence of vegetation on mushroom fruiting was likewise noted, with 38 species, including Suillus bovinus and Boletopsis leucomelas being specific to pine dominated stands, while 42 species, including Polyporus arcularius and Hericium erinaceum were specific to oak dominated stands. On the other hand, around 50 species, including Laccaria laccata and Lycoperdon parlatum, were able to fruit in both types of vegetation. In conclusion, mushroom fruiting greatly varies with changes in precipitation, soil moisture, temperature and vegetation.

Hydrologic Regimes Analyses on Down Stream Effects of the Young Chun Dam by Indicators of Hydrologic Alterations (수문변화 지표법에 의한 영천댐이 하류하천에 미치는 유황변화 분석)

  • Park, Bong-Jin;Kim, Joon-Tae;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.163-172
    • /
    • 2008
  • Hydrologic regimes play a major role in determining the biotic composition, structure, and function of river ecosystem. In this study, hydrologic regimes were analyzed on down stream effects of the Young-Chun dam construction using the Indicators of Hydrologic Alterations(IHA). The analysis results were as follows ; (1) Monthly mean flows were decreased during drought and flood season on the pre and post dam, (2) Magnitude and Duration of Annual Exterm Conditions, annual minima 1-day means was $3.48m^3/sec$, $0.89m^3/sec$ and annual maxima 1-day mean was $833.1m^3/sec$, $672.1m^3/sec$ on the pre and post dam (3) Timing of Annual Exterm conditions, Julian date of the annual minima 1-day means was 180th(June) in the pre dam, 257th(September) in the post dam, Julian date of the annual maxima 1-day means was 209th(July) in the pre dam, 217th(August) in the post dam, (4) Frequency and Duration of High and Low Pulse, Low Puls counts and duration were 3 times and 23 days in the pre dam, High Pulse counts and duration were 4 times and 2 days in the pre dam. (5) Rate and Frequency of Water Condition Changes, rise rates was 39.27 %, 19.36 % and fall rates -15.85 %, -8.16 % in the pre and post dam, respectively (6) Coefficient of Variation, annual exteram water conditions were decreased from 0.9054 to 0.6314 and from 1.0440 to 0.9617, Timing of Annual Exterm conditions were incereased for minima flow from 0.269 to 0.282, for maxima form 0.069 to 0.153.

Changes of soil water content and soybean (Glycine max L.) response to groundwater levels using lysimeter

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.299-299
    • /
    • 2017
  • Due to the climate changes in Korea, the numbers of both torrential rain events and drought periods have increased in frequency. Water management practice against water shortage and flooding is one of the key interesting for field crop cultivation, and groundwater often serves as an important and safe source of water to crops. Therefore, the objective of this study is to evaluate the effect of groundwater table levels on soil water content and soybean development under two different textured soils. The experiment was conducted using lysimeter located in Miryang, Korea. Two types of soils (sandy-loam and silty-loam) were used with three groundwater table levels (0.2, 0.4, 0.6m). Mean soil water content during the soybean growth period was significantly influenced by groundwater table levels. With the continuous groundwater level at 0.2m from the soil surface, soil water content was not statistically changed between vegetative and reproductive stage, but the 0.4 and 0.6m groundwater table level was significantly decreased. Lower chlorophyll content in soybean leaves was found in shallow water table treatment in earlier part of the growing season, but the chlorophyll contents were non-significant among water table treatments. Groundwater table level treatments were significantly influenced on plant available nitrogen content in surface soil. The highest N contents were observed in 0.6m groundwater table level. It is probably due to the nitrogen loss by denitrification as the result of high soil water content. The length and dry weight of primary root was influenced by groundwater level and thus the highest length and dry weight of root were observed in 0.6m water table level. This result showed that soybean root growth did not extend below the groundwater level and increased with the depth of groundwater table level. The results of this study show that the management of groundwater level can influence on soil characteristics, especially on soil water content, and it is an important practice of to reduce yield loss caused by the water stress during the crop growing season.

  • PDF

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

Analysis of Paddy Rice Water Footprint under Climate Change Using AquaCrop (AquaCrop을 이용한 기후변화에 따른 미래 논벼 물발자국 변화 분석)

  • Oh, Bu-Yeong;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Climate change causes changes in rainfall patterns, temperature and drought frequency. Climate change impact influences on water management and crop production. It is critical issue in agricultural industry. Rice is a staple cereal crop in South Korea and Korea uses a ponding system for its paddy fields which requires a significant amount of water. In addition, water supply has inter-relationship with crop production which indicates water productivity. Therefore, it is important to assess overall impacts of climate change on water resource and crop production. A water footprint concept is an indicator which shows relationship between water use and crop yield. In addition, it generally composed of three components depending on water resources: green, blue, grey water. This study analyzed the change trend of water footprint of paddy rice under the climate change. The downscaled climate data from HadGEM3-RA based on RCP 8.5 scenario was applied as future periods (2020s, 2050s, 2080s), and historical climate data was set to base line (1990s). Depending on agro-climatic zones, Suwon and Jeonju were selected for study area. A yield of paddy rice was simulated by using FAO-AquaCrop 5.0, which is a water-driven crop model. Model was calibrated by adjusting parameters and was validated by Mann-Whitney U test statistically. The means of water footprint were projected increase by 55 % (2020s), 51 % (2050s) and 48 % (2080s), respectively, from the baseline value of $767m^2/ton$ in Suwon. In case of Jeonju, total water footprint was projected to increase by 46 % (2020s), 45 % (2050s), 12 % (2080s), respectively, from the baseline value of $765m^2/ton$. The results are expected to be useful for paddy water management and operation of water supply system and apply in establishing long-term policies for agricultural water resources.

Effect of Monoculture and Mixtures on Dry Matter Yield and Feed Value of Italian Ryegrass (Lolium Multiflorum Lam.) (이탈리안 라이그라스의 단파 및 혼파 재배가 건물수량 및 사료가치에 미치는 영향)

  • Jeong Sung Jung;Bo Ram Choi;Ouk Kyu Han;Bae Hun Lee;Ki Choon Choi
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • This study was conducted to analyze and compare the dry matter yield of Italian ryegrass (IRG) cultivated under monoculture and mixed culture system to recommend suitable varieties that can be cultivated. Italian ryegrass cultivars, Green Fram (GF, extremely early-maturing), Kowinearly (KE, early-maturing), Kowinmaster (KM, mild-maturing), and Hwasan 104 (H104, late-maturing), were used for mono or mixed cultivation. The average monthly temperature in Cheonan over the past 30 years tended to be similar, but that in November and March are judged to be abnormal weather. The dry matter yield of GF+H104 was significantly higher during harvest than that of GF (p<0.05). The dry matter yields of KE and KE+KM were significantly higher during harvest than the output standards of KE and KM. There was no significant difference between the dry matter yield of H104 and KM (p>0.05), but KM had the highest yield of 16,763.1 kg/ha. Analysis showed that the highest dry matter yield during IRG harvest was obtained under monoculture and KE+KM mixed culture. Because the occurrence frequency of abnormal weather such as drought during spring is increasing recently, it is judged that IRG cultivation using early and middle growth is necessary to prepare for abnormal weather.

Physiological responses involved in reactive oxygen species (ROS) of rice plant under alone or multi artificial stress conditions

  • Kim, Yoonha;Waqas, Muhammad;Khan, Abdul Latif;Mun, Bong-Gyu;Yun, Byung-Wook;Lee, In-Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.203-203
    • /
    • 2017
  • The Earth's climate is rapidly changing because of increasing carbon dioxide content in atmosphere so, climate prediction models anticipate that earth surface temperature will rise by 3 to $5^{\circ}C$ in next 50 to 100 years. Therefore, frequency of un-expected weather events such as drought, salinity, low or high temperature and flooding etc. will be increasing worldwide. Furthermore, increased atmosphere temperature can influence pests and pathogens spread as well. Therefore, to protect enormous grain loss from unexpected weather conditions, studies related with combine stress conditions like abiotic plus biotic stress condition are really required. Thus, our research focused on physiological responses under combined abiotic and biotic stress condition in rice plant. To induce uniform stress condition, we used NaCl (100 mM) and salicylic acid (0.5 and 1.0 mM SA) as each stress a stimulator. Each artificial abiotic and biotic stress inducer was applied to hydroponically grown rice seedlings alone or together for four day. The data were collected in a time-dependent manner [1, 2, 3 and 4 day(s) after treatment (DAT)] and were matched with our anticipation that shoot length and shoot fresh weight was decreased in solo and combined abiotic and biotic stress condition. The lipid peroxidation content was significantly increased ($1.5{\pm}0.2$ to $2.7{\pm}0.1mg$ mg of $MDA\;g^{-1}FW$) in the first two days in both stress exposed plants, and showed the opposite trend ($0.5{\pm}0.01$ to $0.1{\pm}0.001mg$ of $MDA\;g^{-1}FW$) in last two days under multi stress condition. Superoxide dismutase (SOD) activity did not showed difference in only biotic stress condition (alone 0.5 and 1.0 mM SA) as compared to control however, it was significantly increased in multi stress condition or solo abiotic stress condition whereas, catalase (CAT), and ascorbate peroxidase (APX) activities were significantly decreased in solo biotic and combined abiotic and biotic condition. In particular, both enzymes activities were more decreased in multi stress condition as compared to solo biotic stress condition. The results for relative mRNA expression level of CAT and APX enzymes were in agreement with results of spectrophotometric values. Correlation value between each stress condition and phenotypic data showed that biotic stress condition showed high correlation with activity of CAT and APX whilst, abiotic stress condition revealed significant correlation with SOD activity.

  • PDF

A Study to Determine the Consumptive Use of Water for Upland Crops (전작물의 필요수량 결정을 위한 연구)

  • 김철회;유시창;이근후;서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.37-45
    • /
    • 1980
  • This study was carried out to investigate the consumptive use of water for red peppers and soy beans. The correlation between the soil moisture contents and the selected meteorological factors during the growing season was analyzed. Characteristics of the drought at Jinju, Yeosu, Gwangju, and Mokpo area were figured out in view of frequency analysis. The results obtained from this study could be used as a reasonable criteria for the estimation of the duty of water in the design of upland irrigation systems. Obtained results are summarized as follows: 1. Red peppers were grown at the three levels of soil moisture contents; 75 percent, 50 percent, and 25 percent, respectively. The red pepper grown at the 75 percent of soil moisture content showed the highest yield. The total evapotranspiration during the growing season from red peppers was 471. lmm, which was 86.6mm less than the pan evaporation. 2. The soy bean grown at 75 percent soil moisture content showed the highest yield, although there was no signicant difference in yields among treatments. The total evapotranspiration during the growing season from the soy bean was 342.8 mm, which was 119.2mm less than the pan evaporation. 3. Coefficients of consumptive use(k) and meteorological data are shown on Table-9. 4. The significant correlations between the evapotranspiration and the humidity and daily temperature range were observed. Results are shown on Table-11.. Evaporanspiration can be easily estimated from the humidity and daily temperature range by using the equation...... (1) Ept=4.808-0.041H+0.207T.......(1) where, Ept; evapotranspiration(mm/day) H ; humidity(%) T ; daily temperature range ($^{\circ}C$) 5. The variations of soil moisture content during the growing season at the soil depth of 5cm, 15cm, and 45cm are shown on Fig. 4~9. The results of the correlation analysis between the evapotranspiration from the crops and the soil moisture content are shown on Table-12. The evapotranspiration can be estimated from soil moisture content at the different depth of the soil by using the equation....... (2). Ept = 3.433 - 0. 364M1 +0. 359M$_2$- 0. 055M$_3$....... (2) where, Ept; evapotranspiration (mm/day) M1 soil moisture meter reading at 5cm depth M$_2$; " 15cm " M$_2$; " 40cm " 6. The estimated probab]e successive dry days in selected areas are shown on Table 13. Gumbel-Chow method was used to calculate the probable successive dry days. Further investigation are required to obtain the more detailed and reliable results.

  • PDF