• Title/Summary/Keyword: frequency domain design

Search Result 607, Processing Time 0.022 seconds

Preliminary Study on Linear Dynamic Response Topology Optimization Using Equivalent Static Loads (등가정하중을 사용한 선형 동적반응 위상최적설계 기초연구)

  • Jang, Hwan-Hak;Lee, Hyun-Ah;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1401-1409
    • /
    • 2009
  • All the forces in the real world act dynamically on structures. Design and analysis should be performed based on the dynamic loads for the safety of structures. Dynamic (transient or vibrational) responses have many peaks in the time domain. Topology optimization, which gives an excellent conceptual design, mainly has been performed with static loads. In topology optimization, the number of design variables is quite large and considering the peaks is fairly costly. Topology optimization in the frequency domain has been performed to consider the dynamic effects; however, it is not sufficient to fully include the dynamic characteristics. In this research, linear dynamic response topology optimization is performed in the time domain. First, the necessity of topology optimization to directly consider the dynamic loads is verified by identifying the relationship between the natural frequency of a structure and the excitation frequency. When the natural frequency of a structure is low, the dynamic characteristics (inertia effect) should be considered. The equivalent static loads (ESLs) method is proposed for linear dynamic response topology optimization. ESLs are made to generate the same response field as that from dynamic loads at each time step of dynamic response analysis. The method was originally developed for size and shape optimizations. The original method is expanded to topology optimization under dynamic loads. At each time step of dynamic analysis, ESLs are calculated and ESLs are used as the external loads in static response topology optimization. The results of topology optimization are used to update the design variables (density of finite elements) and the updated design variables are used in dynamic analysis in a cyclic manner until the convergence criteria are satisfied. The updating rules and convergence criteria in the ESLs method are newly proposed for linear dynamic response topology optimization. The proposed updating rules are the artificial material method and the element elimination method. The artificial material method updates the material property for dynamic analysis at the next cycle using the results of topology optimization. The element elimination method is proposed to remove the element which has low density when static topology optimization is finished. These proposed methods are applied to some examples. The results are discussed in comparison with conventional linear static response topology optimization.

Identification of Aerodynamic Model CFD-Based for Gust Response Analysis

  • Nie, Xueyuan;Yang, Guowei
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.43-46
    • /
    • 2015
  • Aeroelastic gust response analysis plays an important role in design of aircrafts. For gust response analysis, frequency domain aerodynamics method has been typically used with generalized aerodynamic influence coefficient matrices at various reduced frequencies. However, it cannot be applied to the aeroservoelastic analysis, such as gust alleviation control. Time-domain state space (SS) models must be built. It attacks little attention that gust response analysis relies on continuous gust time-domain input signal in terms of its PSD function. The aim the current study is to provide a reduced-order modeling (ROM) method based on CFD to model gust responses for continuous gust responses for continuou gust inputs in time domain. The paper analyzed the gust response of AGARD445.6 wing subjected to the Dryden gust with ROMs and compared the difference between the rigid structure and elastic one. The results demonstrate that structure elastic effect effect should be considered in the design of aircraft.

The Recognition Method for Focus Level using ECG(electrocardiogram) (심전도를 이용한 집중도 인식 방법)

  • Lee, Dong Won;Park, Sangin;Whang, Mincheol
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.2
    • /
    • pp.370-377
    • /
    • 2018
  • Focus level has been important mental state in user study. Cardiac response has been related to focus and less clarified. The study was to determine cardiac parameters for recognizing focus level. The sixty participants were asked to play shooting game designed to control two focus levels. Electrocardiogram was measured during task. The parameters of time domain and frequency domain were determined from ECG. As a result of independent t-test, RRI, SDNN, rMSSD and pNN50 of time domain indicator were statistically significant in recognizing focus level. LF, HF, lnLF and lnHF of frequency domain were observed to be significant indicator. The rule base for recognition has been developed by the combination of RRI, rMSSD and lnHF. The rule base has been verified from another sixty data samples. The recognition accuracy were 95%. This study proposed significant cardiac indicators for recognizing focus level. The results provides objective measurement of focus in user interaction design in the fields of contents industry and service design.

Development of 2D Structural Shape Optimization Scheme Using Selective Element Method (선택적 요소 방법을 이용한 2차원 구조물의 형상 최적설계 기법 개발)

  • 심진욱;신정규;박경진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.599-607
    • /
    • 2002
  • During the shape optimization, relocations of nodes happen successively. However, excessive movement of nodes often results in the mesh distortion and eventually deteriorates the accuracy of the optimum solution. To overcome this problem, an efficient method lot the shape optimization has been developed. The method starts from the design domain which is large enough to hold the possible shape of the structure. The design domain has pre-defined uniform fine meshes. In each cycle, the method allots real properties to the elements inside the structure and nearly zero to ones outside. The performance of the method is evaluated through two examples with displacement and frequency constraints.

A Study on the Design of Low Back Muscle Evaluation System Using Surface EMG (표면근전도를 이용한 허리근육 평가시스템의 설계에 관한 연구)

  • Lee Tae-Woo;Ko Do-Young;Jung Chul-Ki;Kim In-Soo;Kang Won-Hee;Lee Ho-Yong;Kim Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.338-347
    • /
    • 2005
  • A computer-based low back muscle evaluation system was designed to simultaneously acquire, process, display, quantify, and correlate electromyographic(EMG) activity with muscle force, and range of motion(ROM) in the lumbar muscle of human. This integrated multi-channel system was designed around notebook PC. Each channel consisted of a time and frequency domain block, and T-F(time-frequency) domain block. The captured data in each channel was used to display and Quantify : raw EMG, histogram, zero crossing, turn, RMS(root mean square), variance, mean, power spectrum, median frequency, mean frequency, wavelet transform, Wigner-Ville distribution, Choi-Williams distribution, and Cohen-Posch distribution. To evaluate the performance of the designed system, the static and dynamic contraction experiments from lumbar(waist) level of human were done. The experiment performed in five subjects, and various parameters were tested and compared. This system could equally well be modified to allow acquisition, processing, and analysis of EMG signals in other studies and applications.

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

WAVELET ANALYSIS OF VEHICLE NONSTATIONARY VIBRATION UNDER CORRELATED FOUR-WHEEL RANDOM EXCITATION

  • Wang, Y.S.;Lee, C.M.;Zhang, L.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.257-268
    • /
    • 2004
  • The wavelet analysis method is introduced in this paper to study the nonstationary vibration of vehicles. A new road model, a so-called time domain correlated four-wheel road roughness, which considers the coherence relationships between the four wheels of a vehicle, has been newly developed. Based on a vehicle model with eight degrees of freedom, the analysis of nonstationary random vibration responses was carried out in a time domain on a computer. Verification of the simulation results show that the proposed road model is more accurate than previous ones and that the simulated responses are credible enough when compared with some references. Furthermore, by taking wavelet analysis on simulated signals, some substantial rules of vehicle nonstationary vibration, such as the relationship between each vibration level, and how the vibration energy flows on a time-frequency map, beyond those from conventional spectral analysis, were revealed, and these will be of much benefit to vehicle design.

다층 유전체위의 다중 결합선로에 대한 유한차분법(FDTD)을 이용한 해석

  • 김윤석
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.155-163
    • /
    • 2000
  • A general characterization procedure based on the extraction of a 2n-port admittance matrix corresponding to n uniform coupled lines on the multi-layered substrate using the Finite-Difference Time-Domain (FDTD) technique is presented. The frequency-dependent normal mode parameters are obtained from the 2n-port admittance matrix, which in turn provides the frequency-dependent distributed inductance and capacitance matrices. To illustrate the technique, several practical coupled line structures on multi-layered substrate, including a three-line structure, have been simulated. It is shown that the FDTD based time domain characterization procedure is an excellent broadband simulation tool for the design of multiconductor coupled lines on multilayered PCBs as well as thick or thin hybrid structures.

  • PDF

Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance (주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어)

  • Kim, Ki-Bum;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.

Frequency-Domain Properties of Digital Optimal stems Servosystem Counting Computation Delays (연산시간을 고려한 디지털 취적서보계의 주파수 특성)

  • 이동철;하주식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.9
    • /
    • pp.937-944
    • /
    • 1991
  • In digital controller design, the delays in the controller should be taken into consideration when the computation time of the processor is not negligibale compared with sampling time. Recently, Mita has proposed a digital optimal servosystem taking account of the delays in the controller. In this paper, robust stability and diturbance rejection properties of this optimal servosystej are analyzed in the frequency-domain. The well-known asymptotic properties of the optimal regulators with respect to the weighting matrices of the cost functions are successfully utilized to show that the influence of the delays in the controller are drastic for certain choice of the cost function Illustrative numerical examples are presented.

  • PDF