• Title/Summary/Keyword: frequency allocation

Search Result 552, Processing Time 0.04 seconds

PSNR based adaptive Resource allocation for multimedia multicast service over 4G networks (4G networks의 멀티미디어 멀티캐스트 서비스에서 PSNR기반의 효율적인 Resource allocation)

  • Kim, Junoh;Kwon, Yong Il;Suh, Doug Young
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.102-104
    • /
    • 2011
  • 최근 비디오 스트리밍과 대화형 비디오 서비스 등과 같은 광대역 멀티미디어 서비스를 지원하기 위하여 Wimax와 같은 4G 무선네트워크 시스템 기술이 발전해 왔다. 4G 무선네트워크의 OFDM(Orthogonal Frequency Division Multiplexing)과 MIMO(multi Input Multi Output)은 사용자들에게 매우 유연한 QoS(Quality of Service) 서비스를 제공해 줄 수 있다.[1] 이 논문에서는 다양한 네트워크 상황에서 멀티캐스트 그룹에게 효율적인 방법으로 통신 자원을 할당하기 위해 OFDM 방법을 사용 하였다. 이에 본 논문에서는 한 셀(cell) 내의 서로 다른 멀티캐스트의 그룹의 다른 SNR(Signal to noise Ratio)의 사용자 분포에 따른 적응적인 scalable 비디오 멀티캐스트 방식을 제안한다. 더 나은 수신율을 가진 사용자는 최적의 MCS(Modulation and Coding Scheme) 할당을 통해 서로 다른 화질의 scalable 비디오 계층 중 높은 해상도의 비디오를 받을 수 있다. 논문에서는 전체 전송률을 최적화 하는 대신 전송받은 전체 비디오의 평균 화질을 최적화하는 방법을 제안한다.

  • PDF

An Adaptive-Harvest-Then-Transmit Protocol for Wireless Powered Communications: Multiple Antennas System and Performance Analysis

  • Nguyen, Xuan Xinh;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1889-1910
    • /
    • 2017
  • This paper investigates a protocol so-called Adaptive Harvest Then Transmit (AHTT) for wireless powered communication networks (WPCNs) in multiple-input single-output (MISO) downlink systems, which assists in transmitting signals from a multi-antenna transmitter to a single-antenna receiver. Particularly, the power constrained relay is supplied with power by utilizing radio frequency (RF) signals from the source. In order to take advantage of multiple antennas, two different linear processing schemes, including Maximum Ratio Combining (MRC) and Selection Combination (SC) are studied. The system outage capacity and ergodic capacity are evaluated for performance analysis. Furthermore, the optimal power allocation is also considered. Our numerical and simulation results prove that the implementation of multiple antennas helps boost the energy harvesting capability. Therefore, this paper puts forward a new way to the energy efficiency (EE) enhancement, which contributes to better system performance.

Channel Allocation Scheme considering Inter-Link Interference for Cognitive Radio Networks (인지무선통신에서 링크 간 간섭을 고려한 채널할당기법)

  • Kwon, Young-Min;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1080-1082
    • /
    • 2016
  • In a multi-hop CR (Cognitive Radio) network, each node find a path to destination node through several links. If links have the same frequency channel, there can be a serious interference among the links and it can reduce the network capacity. In multi-channel CR networks, each channel has different capacity according to the inter-link interference, and each channel has different traffic properties of primary users. In this paper, we propose channel scheduling scheme to minimize channel interferences and collision with primary users. Simulation results show the improvement of channel capacity and collision rate with primary users.

Downlink Performance Improvement of TDD CDMA Cellular Networks with Time Slot and Fixed Hopping Station Allocations

  • Zhou, Rui;Nguyen, Hoang Nam;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.247-253
    • /
    • 2007
  • In this paper, downlink capacity of time duplex division (TDD) based cellular wireless networks utilizing fixed hopping stations is investigated. In the network, a number of fixed subscriber stations act as hopping transmission stations between base stations and far away subscribers, forming a cellular and ad hoc mobile network model. At the radio layer, TDD code division multiple access (CDMA) is selected as the radio interface due to high efficiency of frequency usage. In order to improve the system performance in terms of downlink capacity, we propose different time slot allocation schemes with the usage of fixed hopping stations, which can be selected by either random or distanced dependent schemes. Performance results obtained by computer simulation demonstrate the effectiveness of the proposed network to improve downlink system capacity.

Application of Genetic Algorithms to Optimize the Storage Location of Products in Military Logistics (군(軍) 물류창고 내(內) 물품 저장위치 최적화를 위한 유전알고리즘 적용 방안)

  • Ha, Won Yong;Cho, Ki-yang;Han, Chung Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.108-116
    • /
    • 2022
  • Supply in military operations has a significant impact on overall combat capability and efficiency. Therefore, modernization of military logistics is underway to ensure rapid and accurate distribution. And, effective warehouse management is paramount. This paper proposes a new product allocation model that uses a genetic algorithm. The model considers order frequency and mass of products because the military equipment is usually heavier than available products. A computer simulation shows that products are assigned to optimal locations and reduce the consumed energy for forklifts by more than 25 % with similar travel time. Also, we show the superiority of genetic algorithm by comparing them with other algorithms.

Energy-efficient mmWave cell-free massive MIMO downlink transmission with low-resolution DACs and phase shifters

  • Seung-Eun Hong;Jee-Hyeon Na
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.885-902
    • /
    • 2022
  • The mmWave cell-free massive MIMO (CFmMIMO), combining the advantages of wide bandwidth in the mmWave frequency band and the high- and uniform-spectral efficiency of CFmMIMO, has recently emerged as one of the enabling technologies for 6G. In this paper, we propose a novel framework for energy-efficient mmWave CFmMIMO systems that uses low-resolution digital-analog converters (DACs) and phase shifters (PSs) to introduce lowcomplexity hybrid precoding. Additionally, we propose a heuristic pilot allocation scheme that makes the best effort to slash some interference from copilot users. The simulation results show that the proposed hybrid precoding and pilot allocation scheme outperforms the existing schemes. Furthermore, we reveal the relationship between the energy and spectral efficiencies for the proposed mmWave CFmMIMO system by modeling the whole network power consumption and observe that the introduction of low-resolution DACs and PSs is effective in increasing the energy efficiency by compromising the spectral efficiency and the network power consumption.

An Adaptive Resource Allocation Scheme in Cognitive Radio Network Assisted Satellite (무선 인지 네트워크에서 위성을 이용한 적응적인 자원 할당 기법)

  • Lee, Seon-Yeong;Sohn, Sung-Hwan;Jang, Sung-Jin;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.5-11
    • /
    • 2009
  • In this paper, we propose our design of adaptive resource allocation in the cognitive radio network assisted by satellite to improve the performance of Cognitive Radio user. Most of today’s telecommunication network operates in a fixed, licensed frequency band using a specific spectrum access network. However, the spectrum is not always used all the time, all the band. It causes the inefficiency in the spectrum usage. Thus, cognitive radio network is proposed to solve these spectrum inefficiency problems. The cognitive radio users (secondary users) are coexistent with primary users (PUs) who are licensed. That cognitive radio network is considered as lower priority comparing with primary user. So, the operation of the cognitive radio network is limited to interference constraints. Especially, when the number of secondary users increases, CCI among SUs will increase as well as interference to PU. That motivates our objective to improve the performance even if cognitive radio users increase. To solve this problem, we suggest an adaptive resource allocation scheme to improve the performance of cognitive radio network assisted by satellite. Through this algorithm, we can improve the cognitive radio network performance. And the simulation results confirm the effectiveness of our proposed algorithm.

  • PDF

Efficient Adaptive Modulation Technique for Multiuser OFDMA Systems (다중 사용자 OFDMA 시스템에서의 효율적인 적응 변조 및 부호화 기법)

  • Kwon, Jung-Hyoung;Rhee, Do-Ho;Byun, Il-Mu;Whang, Keum-Chan;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1240-1248
    • /
    • 2006
  • In this paper, we present a new method for user selection, sub-band allocation, and power allocation in order to maximize the system throughput under the constraint of transmit power in multiuser downlink orthogonal frequency division multiple access (OFDMA) systems with partial channel quality information (CQI). In previous schemes, each user in one cell transmits CQI of all sub-bands to the base station, which requires enormous feedback overhead. Therefore, we proposed an efficient power allocation and modulation and coding selection scheme in which each user transmits partial CQI and one additional information to reduce the amount of feedback. Simulation results show that we can greatly reduce the amount of feedback than full feedback system.

A Unified Framework for Joint Optimal Design of Subchannel Matching and Power Allocation in Multi-hop Relay Network (멀티홉 중계 네트워크에서 최적 부채널 및 전력 할당을 위한 통합적 접근법)

  • Jang, Seung-Hun;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.646-653
    • /
    • 2010
  • This paper provides a unified framework for the joint optimal subchannel and power allocation in multi-hop relay network, where each node in the network has multiple parallel subchannels such as in OFDM or MIMO system. When there are multiple parallel subchannels between nodes, the relay node decides how to match the subchannel at the first hop with the one at the second hop aside from determining the power allocation. Joint optimal design of subchannel matching and power allocation is, in general, known to be very difficult to solve due to the combinatorial nature involved in subchannel matching. Despite this difficulty, we use a simple rearrangement inequality and show that seemingly difficult problems can be efficiently solved. This includes several existing solution methods as special cases. We also provide various design examples to show the effectiveness of the proposed framework.

A Device-to-device Sharing-Resource Allocation Scheme based on Adaptive Group-wise Subset Reuse in OFDMA Cellular Network (OFDMA 셀룰러 네트워크에서 적응적인 Group-wise Subset Reuse 기반 Device-to-device 공유 자원 할당 기법)

  • Kim, Ji-Eun;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.72-79
    • /
    • 2010
  • Device-to-device(D2D) links which share resources in a cellular network present a challenge in radio resource management due to the potentially severe interference they may cause to the cellular network. In this paper, a resource allocation scheme based on subset reuse methods is proposed to minimize the interference from the D2D links. We consider an adaptive group-wise subset reuse method to enhance the efficiency of frequency resource allocation for cellular and D2D links. A power optimization scheme is also proposed for D2D links if cellular links are interfered by adjacent D2D transmissions. The computer simulation results show that performance gain is obtained in link SINR, and total cell throughput increases as nearby traffic becomes more dominant.