• Title/Summary/Keyword: freezing conditions

Search Result 391, Processing Time 0.032 seconds

Prediction of Possibility of Indoor Pipe Freezing in Heat Only Boiler Room through Thermal Analysis (열분석을 통한 열전용 보일러동 실내배관의 동파 가능성 예측)

  • Lim, Byoung-Ik;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.19-28
    • /
    • 2012
  • In a heat only boiler system of a steam power plant, outdoor air required for combustion is made to pass through indoor space for increasing the boiler efficiency. Due to heat generated by various equipments, temperature of the air that enters the boiler will increase resulting in combustion efficiency. If the outdoor air temperature is low, however, this will cause freezing and bursting of pipes which are filled with water. It is especially fatal to small diameter pipes and pipes connected to measuring instruments. The purpose of this study is find operation and outdoor conditions where this phenomena can happen and also establish preventive measures to avoid this problem.

Evaluation criteria for freezing and thawing of tunnel concrete lining according to theoretical and experimental analysis

  • Moon, Joon-Shik;An, Jai-Wook;Kim, Hong-Kyoon;Lee, Jong-Gun;Lattner, Tim
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.349-357
    • /
    • 2022
  • Abnormal climate events are occurring frequently around the world. In particular, cold waves and heavy snow lead to damage and deterioration of facilities, which can cause loss of life or property damage, such as shortening the lifespan of facilities. Therefore, it is very important to prepare an appropriate maintenance system and to establish a strategy to cope with abnormal weather conditions. In this study, laboratory freezing experiments were performed to analyze the freeze-thaw characteristics affecting the tunnel concrete lining, and heat flow analysis was carried out based on the test results. Based on these experimental and theoretical analysis results, quantitative freeze-thaw evaluation criteria for tunnel concrete linings were proposed.

Anti-freezing effect of mortar surface with superhydrophobic water repellent (초소수성 발수제를 사용한 모르타르 표면의 결빙 방지 효과)

  • Kim, Sang-Jin;In, Byung-Eun;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.15-16
    • /
    • 2022
  • In order to examine the adhesion characteristics of road pavement according to environmental conditions, the freezing time of cement mortar and the adhesion performance between ice and pavement were evaluated depending on the presence or absence of polymer and water repellent. As a result of measuring the ice formation time, it was found that there was no delay when a polymer was added, but the complete freezing time was delayed when a water repellent was added. As a result of measuring the strength of ice adhesion, it was found that the bonding force between ice and the surface of the test body was greatly generated in the test body without water repellent. In the case of a test specimen to which a water repellent was added, it was found that the bonding strength between the test specimen surface and ice was reduced.

  • PDF

Post-thaw Development of Rabbit Zygotes Following Vitrification or Slow Freezing (유리화 및 완만동결법에 의한 토끼 전핵배의 동결보존 후 배발달율)

  • 박충생;강다원;하란조;공일근;최상용;이효종
    • Journal of Embryo Transfer
    • /
    • v.12 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • This study was carried out to investigate the effect of vitrification and slow freezing methods on the post-thaw developmental rate of rabbit zygotes. After exposing rabbit zygotes in EFS solution for 0.5, 1, 2, 3 and S min at room temperature, they were washed with 0.5 M sucrose solution, D-PBS and TCM-199 and then cultured in TCM-199 plus 10% FBS with bovine oviduct epithelial cells(BOEC) to examine whether the cryoprotectant induced injury during the various exposure periods. The embryo development rates to hatched blastocyst after exposing in EFS solution for 3 and 5 min(40.0 and 16.7%) were significantly lower than in 0.5, 1 and 2 min(63.0, 72.0 and 54.5%), respectively. The post-thaw development rates to hatched blastocyst were significantly(P<0.05) higher in in vivo morula with intact mucin coat(85.2%) and mucin seperated morula(77.8%) than those of in vitro morula(58.5%) and zygote(5.9%), hut no difference was shown between in vitro morulae and mucin separated morula. The cryoprotectant dilution procedures showed no effects on the post-thaw development rates to hatched blastocyst under the present culture conditions. The post-thaw development to hatched blastocyst in the rabbit zygotes was not significantly different between the slow freezing(12.8%) and vitrification(5.9%). These results indicated that the rabbit frozen zygotes could he successfully developed in vitro to hatched blastocysts, though their developmental rate was very low, compared with morula stage embryos, in either vitrification or slow freezing procedure under the present conditions.

  • PDF

A study on the solar assisted heating system with refrigerant as working fluid (냉매를 작동유체로 사용하는 태양열 난방시스템에 관한 연구)

  • Kim, Ji-Young;Ko, Gawng-Soo;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.37-44
    • /
    • 2005
  • An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.

Freezing Injury of Evergreen Broad-Leaved Trees in Warm-Temperature in the Southern Region in Korea -A Case of Machilus Thunbergii Siebold & Zucc. on the Jungma-dong, Gwangyang-city, Jeollanam Province- (한국 남부지방 난온대성 상록활엽수의 동해피해 -전라남도 광양시 중마동의 후박나무를 중심으로-)

  • Lee, Ki-Won;Kim, Do-Gyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.1
    • /
    • pp.77-96
    • /
    • 2017
  • This study was carried out to clarify the climatic factors of the freezing injury for the judgement on the adaptation areas of evergreen broad-leaved trees. We surveyed and analyzed the climatic factors of the freezing injury to Machilus thunbergii Siebold & Zucc. on the streets with the analyzation of planting grounds, soil conditions and the surrounding buildings. This study showed that only the minimum air temperature factor out of the other climate elements, which were the annual precipitation; the average annual temperature; the average monthly temperature of january; the average monthly minimum temperature of January; the average temperature of the coldest month; the warmth index and the coldness index, was matched up with the previous theories and reports on the freezing damages on the evergreen broad leaved trees and Machilus thunbergii Siebold & Zucc. The freezing injury of Machilus thunbergii Siebold & Zucc was occurred when the mean minimum temperature of the coldest month(TMC) in winter season fell down below $-4.1^{\circ}C$ and the temperature fell down below $-9.2^{\circ}C$. The freezing damage on Machilus thunbergii Siebold & Zucc surrounded by high buildings were less than those surrounded by low buildings or at non buildings.

Influence of Freezing Rate on the Aroma Retention in a Freeze Drying System (동결건조 시스템에서 동결속도가 향미물질 보존에 미치는 영향)

  • Byun, Myung-Hee;Choi, Mi-Jung;Lee, Sung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.176-184
    • /
    • 1998
  • The objective of this study was to investigate the effects of freezing rate on aroma retention and to examine the mechanism of aroma retention during freeze drying process. Our experiments were carried out with self-manufactured freeze-dryer. Gelatin gels (2% w / w, 80${\times}$20mm) containing diacetyl(2mg/ml) were frozen unidirectionally (Neumann's model) from the bottom at -45, -30, -20, and -15$^{\circ}C$ and followed with freeze-drying. Under the upper conditions we measured freezing rate and the change of temperature and pressure during freeze drying. Freeze-dried gelatins were cut horizontally into 5 mm thickness from the bottom measured and diacetly contents. Besides, we observed the effect of the relative humidity of the diacetyl contents freeze-dried gelatin during storage. The retained diacetyl content was increased at high freezing temperature and in order of 0∼5, 5∼10, 10∼15, 15∼20 mm section from the bottom of the sample. It was observed that the retained diacetyl content was high in 15∼20 mm section. The retained diacetyl content and freeze-dried gelatin stored in the condition of high relative humidity was decreased significantly but in the low relative humidity case, was it decreased in small amount. The results of our experiment resents that the low temperature freezing and low humidity storing condition is effective for preserving aroma compound in food.

  • PDF

Effect of Cycles of Freezing and Thawing on the Behavior of Retaining Walls using Reduced-Scale Model Tests (축소 모형실험을 이용한 동결-융해 반복작용이 옹벽 구조물의 거동에 미치는 영향)

  • Yoo, Chungsik;Jang, Dong-Wook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.3
    • /
    • pp.49-58
    • /
    • 2014
  • This paper presents the results of a reduced-scale physical model investigation into the behavior of retaining walls subject to cycles of freezing and thawing due to seasonal temperature change. Reduced-scale model walls equipped with a temperature control chamber that can simulate freezing and thawing conditions were first constructed and a series of tests were conducted with due consideration of different initial water contents of backfill soil and soil types. The results indicate that cycles of freezing and thawing process increase wall deformation as well as earth pressure acting on the wall. Also revealed was that the effect of the freezing and thawing cycles becomes more pronounced for cases with a larger initial water content and for soils with a larger fine content. Practical implications of the findings from this study are discussed in great detail.

Experimental Investigation on the Freezing Condition of Printed Circuit Heat Exchanger for Cryogenic Liquid Hydrogen Vaporizer (극저온 액체수소 기화기용 인쇄기판 열교환기의 동결 조건에 관한 실험적 연구)

  • WOOKYOUNG KIM;BOKYEM KIM;SANGHO SOHN;KONG HOON LEE;JUNGCHUL KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.240-248
    • /
    • 2024
  • The purpose of this study is to investigate the freezing phenomena in printed circuit heat exchanger (PCHE) for cryogenic liquid hydrogen vaporizer. Local freezing phenomena in hot channels should be avoided in designing PCHE for cryogenic liquid hydrogen vaporizer. Hence, the flow and thermal characteristics of PCHE is experimentally investigated to figure out the conditions under when freezing occurs. To conduct lab-scale PCHE experiment, liquid nitrogen is used as a working fluid in cold channels instead of using liquid hydrogen. Glycol water is used as a working fluid in hot channels. Based on the experimental data, ratio between mass flow rates of cold channels and that of hot channels is proposed as contour map to avoid the freezing phenomena in PCHE.