• Title/Summary/Keyword: freezing conditions

Search Result 389, Processing Time 0.032 seconds

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

A Study on Anti-Icing Technique for Ballast Water of Icebreaking Vessels Operating in Ice-Covered Water (극지운항용 빙해선박의 밸러스트 수 결빙방지 기법 연구)

  • Jeong, Seong-Yeob;Lee, Chun-Ju;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.93-97
    • /
    • 2011
  • When freezing is present on ballast water, it can impose additional loads on the hull and effect on stabilization of ship. The anti-icing techniques of ballast water, therefore, are key criteria for ship safety. The existing anti-icing techniques of ballast tank are hull heating, water circulation and air bubble system etc. In this research, anti-icing performance tests for the ballast water using micro-bubble system and sea water circulation system have been carried out at two temperature conditions($-10^{\circ}C$ and $-25^{\circ}C$). Ambient temperature, sea water temperature and temperature of the inner parts of the ballast tank are measured and also ballast water conditions are checked during the model test. The applied anti-icing techniques of ballast water, such as micro-bubble system and sea water circulation system show good performance in the low temperature conditions.

The Evaluation of Various Conditions in the Cryopreservation of Primordial Germ Cells on Korean Native Chicken (Ogye) (한국재래닭(오계)의 원시 생식 세포의 냉동 보존에 있어서 여러 조건의 평가)

  • Kim, Hyun;Cho, Young Moo;Han, Jae Yong;Choi, Sung Bok;Byun, Mi Jeong;Kim, Young Sin;Ko, Yeoung-Gyu;Seong, Hwan-Hoo;Kim, Sung Woo
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.249-259
    • /
    • 2014
  • Cryopreserving cells which are maintaining their viability are the very complex process. This study has been carried out in order to find the effects of cryopreservation steps and freezing media on the rates of viability of cryopreserved chicken primordial germ cells (PGCs). PGCs obtained from the germinal gonade of 5.5~6 day (stage 28) chick embryos of Korean Ogye (KO) and Commercial breeds (C), using the MACS method were suspended in a freezing medium containing a freezing and protecting agents (e.g. dimethyl sulfoxide (DMSO), ethylene glycol (EG) and propylene glycol (PG)). Gonads were harvested from stage 28 chick embryos and pooled in groups of 5, 10, 15, 20E embryos, contributing gonads to the cell suspension. The gonadal cells, including PGCs, were then frozen in 1 of the following cryoprotectant treatments : 2.5%, 5%, 10%, 15% and 0% cryoprotectant (DMSO, EG, PG) as a control. Effects of exposure to slow freezing and vitrification, with different concentrations of the cryoprotectant solution, were examined. After vitrification and slow freezing, survival rates of the frozen-thawed PGCs from the 10% EG plus FBS treatment were 85.63%, and 66.14% (p<0.05), respectively. The viability of PGCs after freeze-thawing was significantly higher for 10% EG plus FBS treatment than for 10% PG + FBS treatment (p<0.05) (85.63% vs 66.81%) by vitrification. This study established a method for preserving chicken PGCs that enables systematic storage and labeling of cryopreserved PGCs in liquid ($LN_2$) at a germplasm repository and ease of entry into a data base. In the future, the importance for this new technology is that poultry lines can be conserved while work is being conducted on improving the production of germline chimeras.

Post-thaw Development of Rabbits Pronuclear Embryos by Cryopreservation (토끼 전핵배의 동결보존 후 배발달률)

  • 강다원;조성근;한재희;곽대오;이효종;최상용;박충생
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.1
    • /
    • pp.75-84
    • /
    • 1999
  • This study assessed development in vitro of pronuclear(PN) stage embryos cryopreserved by the method of either vitrification or slow freezing, by using of different cryoprotectants, and equilibration and cooling rate, in rabbit. Ethyleneglycol- ficoll- sucrose(EFS) or ethyleneglycol- polyvinylpyrrolidone - galactose- (EPG-I) for vitrification, and EPG- II for slow freezing as cryoprotectant were used. The pronuclear embryos were exposed to EFS for 0 to 5 min and diluted with D-PBS and/or pre-dilution with 0.5 M sucrose. To examine the viability of frozen-thawed embryos, PN embryos were co-cultured with bovine oviductal epitherial cell(BOEC) for 5 days to hatching blastocyst stage in 39 $^{\circ}C$ 5% $CO_2$incubator. The results obtained were as follows: The dilution with 0.5 M sucrose and D-PBS after the exposure to EFS for 1.0 min resulted in no significant(P<0.05) decrease in the development of PN embryos to hatching blastocyst(72.0%), compared with controls. The development of PN embryos cryopreserved to hatching blastocyst was not significantly (P<0.05) different between EFS for 1.0 min(72.0%), EPG-I for 1.0 min(72.0%) and EPG-II for 30 min(66. 7%). The post-thaw development of PN embryos to hatching blastocyst was similarly very low as 6.1% and 11.5% in vitrification with EFS and slow freezing with EPG-II, respectively. The incidence of post-thaw zona-crack in PN embryos cryopreserved by slow freezing with plunging to liquid nitrogen at -35$^{\circ}C$ was signicantly(P<0.05) higher(25.0%), compared with -85$^{\circ}C$ (1.9%). These results indicated that the rabbit PN embryos could be cryopreserved with either vitrification or slow freezing procedure, and frozen PN embryos could be successfully developed in vitro to haching blastocyst. but the post-thaw development of cryopreserved PN embryos was still very low under the present conditions.

  • PDF

Effect of Storage Conditions and Scarification on in vitro Seed Germination in Lorathus tanakae Hosok

  • Ghimeray, Amal Kumar;Lee, Hyun Woo;Lee, Bo-Duk;Sharma, Pankaja;Shim, Ie Sung;Park, Cheol Ho
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.263-270
    • /
    • 2014
  • Loranthus tanakae (Franch. & Sav.) is an endangered species of mistletoe, distributed in Korean peninsula. The objective of our research is to determine the effect of storage duration and conditions [air flow (AF) and air tight (AT)] at different temperatures for survivability and germination of mistletoe seeds, and also to monitor the effect of seed scarification on germination in vitro. The result revealed that the seeds stored in natural conditions (no stratification) showed highest survival rate of 100% and retained up to 93.3% even after two months of storage in natural conditions and showed higher germination percentage (90%) compare to after ripened seeds. However, the seed stored at $0^{\circ}C$ decreased the germination percentage (ranged from 63 to 73%). Therefore, it can be confirmed that mistletoe does not need after ripened treatment to promote germination. Our research also showed that the storage of L. tanaka seeds in freezing temperatures of $-20^{\circ}C$ and in room temperature for long time either in AT or AF conditions caused the loss of survival and germination rate. On the other hand, the chemical scarification (0.01N HCl incubation for 12 hrs. at $38^{\circ}C$) method was proven more effective to enhance germination percentage of L. tanakae. Regarding the temperature regime, $22^{\circ}C$ showed early germination of mistletoe seeds in vitro.

Synthesis and Evaluation of Variable Temperature-Electrical Resistance Materials Coated on Metallic Bipolar Plates (온도 의존성 가변 저항 발열체로 표면 처리된 금속 분리판 제조 및 평가)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong Hyun;Ahn, Byung Ki;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • For the successful cold starting of a fuel cell engine, either internal of external heat supply must be made to overcome the formation of ice from water below the freezing point of water. In the present study, switchable vanadium oxide compounds as variable temperature-electrical resistance materials onto the surface of flat metallic bipolar plates have been prepared by a dip-coating technique via an aqueous sol-gel method. Subsequently, the chemical composition and micro-structure of the polycrystalline solid thin films were analyzed by X-ray diffraction, X-ray fluorescence spectroscopy, and field emission scanning electron microscopy. In addition, it was carefully measured electrical resistance hysteresis loop over a temperature range from $-20^{\circ}C$ to $80^{\circ}C$ using the four-point probe method. The experimental results revealed that the thin films was mainly composed of Karelianite $V_2O_3$ which acts as negative temperature coefficient materials. Also, it was found that thermal dissipation rate of the vanadium oxide thin films partially satisfy about 50% saving of the substantial amount of energy required for ice melting at $-20^{\circ}C$. Moreover, electrical resistances of the vanadium-based materials converge on an extremely small value similar to that of pure flat metallic bipolar plates at higher temperature, i.e. $T{\geq}40^{\circ}C$. As a consequence, experimental studies proved that it is possible to apply the variable temperature-electrical resistance material based on vanadium oxides for the cold starting enhancement of a fuel cell vehicle and minimize parasitic power loss and eliminate any necessity for external equipment for heat supply in freezing conditions.

  • PDF

The control of poly-grain and internal cavities for high-quality $CaF_2$ single crystal growth of 6inch in diameter (고품질의 직경 6 inch 형석($CaF_2$)단결정 성장을 위한 poly-grain 및 내부 cavity제어)

  • Seo, Soo-Hyung;Joo, Kyoung;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.550-554
    • /
    • 1998
  • We suggested the new method of thermal screen in Bridgman-Stockbarger method to control the polygrain, the internal cavities and solid-liquid (SL) interface. $CaF_2$ single crystal of 6 inch was grown perfectly when we adopted to use a graphite pipe and a ceramic warmer in the conditions of growth rate 2 mm/hr, vertical temperature of $14^{\circ}C$ for freezing and temperature of $1324^{\circ}C$ at conical tip of crucible. The light scattering phenomena occurred by internal cavities were controlled as decreasing the freezing rate to 2 mm/hr and/or as adopting the rotation of melt (7 rpm).

  • PDF

Resistance to Freezing and Thawing of Concrete Subjected to Carbonation (탄산화를 받은 콘크리트의 동결융해 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.623-631
    • /
    • 2018
  • In this study, the degree of deterioration of concrete was investigated in the laboratory under conditions of carbonation and freeze-thaw cycling, which are the major causes of the deterioration of its performance. In this test, the carbonated concrete was subjected to combined freeze-thaw deterioration tests for up to 300 cycles, and its dynamic elastic modulus and compressive strength were measured. The evaluation of the effect of the water-binder ratio on normal concrete subjected to combined carbonization and freezing-thawing showed that its resistibility against such combined deterioration decreased more rapidly in the concrete with a water-binder ratio of 55 % compared with that having a water-binder ratio of 35 %. In the case where the concrete was blended with a mineral admixture consisting of fly ash and blast furnace slag at the same water-binder ratio, it showed an increase of its resistibility against combined deterioration.

Effect of Monothioglycerol on ROS Inhibition, Mitochondrial Activity, and DNA Integrity in Frozen-thawed Miniature Pig Sperm (Monothiolglycerol이 동결 융해 후 미니돼지 정자의 활성산소 억제, 미토콘드리아 활성 그리고 DNA Integrity에 미치는 영향)

  • Park, Soo-Jung;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.265-271
    • /
    • 2013
  • Cryopreservation and in vitro fertilization (IVF) protocols are important in genetic studies and applications to transgenic animals. Various studies about boar sperm cryopreservation have been studied for a long time. Those were about the use of extenders, the choice of sugars, the cooling and warming rates. The factors that influence the boar sperm are the dramatic changes in temperatures, osmotic and toxic stresses, and reactive oxygen species (ROS) generation. Among these factors, ROS generation is the main damage to DNA which is a principal genetic material and the most important for the practical applications. So we wondered whether ROS generation could be reduced. In previous study, monothioglycerol (MTG) was essential for the culture of embryo stem cells. Therefore we added MTG in the freezing extender based on lactose-egg yolk (LEY) with trehalose. For the assessment of the frozen-thawed sperm, we focused onmotility, membrane integrity and DNA damage. First, we used a computer-aided sperm analysis system for overall conditions of sperm such as motility and viability. Then we performed the sperm chromatin structure assay for DNA integrity and hypo-osmotic swelling test for membrane integrity. And our result showed the existence of MTG in the freezing extender caused less damage to DNA and higher motility in frozen-thawed boar sperm. Also we checked a relative antioxidant activity of MTG in modified Modena B extender. We concluded that this reagent can activate sperm mitochondria at MTG $0.2{\mu}M$, contribute to sperm motility and DNA integrity but there was no significant difference on membrane integrity. Also antioxidant activity of MTG in modified Modena B extender was proved.

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.