• Title/Summary/Keyword: freezing and creeping

Search Result 3, Processing Time 0.024 seconds

Comparative Study on Antioxidant Enzymes and Lipid Peroxidation Related Low Temperature Tolerance in Overwintering Zoysiagrass and Creeping Bentgrass (월동기간 중 Zoysiagrass와 Creeping Bentgrass의 저온내성에 대한 항산화 효소 및 지질과산화의 비교 연구)

  • Kim, Dae-Hyun;Lee, Bok-Rye;Lee, Jae-Sik;Li, Ming;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.267-276
    • /
    • 2006
  • To investigate the physiological responses to winter freezing stress naturally occurring, the level of lipid peroxidation and enzymatic antioxidant responses were compared between zoysiagrass and creeping bentgrass during overwintering. Root mortality of creeping bentgrass was significantly higher than zoysiagrass at January. Root growth of creeping bentgrass was nearly parallel with temperature fluctuation, while zoysiagrass showed little changes in root growth until the end of April. Total nonstructural carbohydrate of zoysiauass was 10% higher than creeping bentgrass. Malondialdehyde(MDA) content in creeping bentgrass was 2-fold higher than that of zoysiagrass. The peroxidase(POD) activity of creeping bentgrass in January was 4.2 times higher, while superoxide(SOD) and catalase(CAT) activities lowered 22% and 67%, respectively, compared to zoysiagrass. These results suggest that zoysiagrass roots much properly operate cold tolerance mechanism and: are less susceptible to cold stress in comparison to creeping bentgrass.

Changes in Non-Structural Carbohydrate in Overwintering Creeping Bentgrass (Agrostis palustris) (크리핑 벤트그라스의 월동중 비구조적 탄수화물의 변화)

  • Kim, Dae-Hyun;Jung, Woo-Jin;Lee, Bok-Rye;Kim, Kil-Yong;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.4
    • /
    • pp.259-264
    • /
    • 2001
  • To investigate the physiological responses to naturally occurring winter freezing stress in creeping bentgrass, changes in carbohydrates were monitored during winter period. Turf quality and leaf growth was nearly parallel with temperature fluctuation. The concentration of glucose, fructose and sucrose in both shoot and root gradually increased from November to January, and then sharply decreased until April. Sucrose was the largest pool of soluble sugars. Fructan also slightly accumulated in both shoot and roots from November to February. Fructan hydrolysis in both organs was found to be much active between February to April. Shoot contained largely higher carbohydrate content in all compounds examined than roots did. Fructan was found to be a main carbohydrate storage form, showing the highest concentration (176.7 and 126.7 mg g-' DW for shoot and root in February). The depolymerization of fructan from February coincided with the high declines in mono- and disaccharide. These results suggest that the accumulation of non-structural carbohydrate until January could be associated with freezing tolerance, and the active decrease from February with shoot regrowth.

  • PDF

Type and Characteristics of Debris Landform in Mt. Mudeung (무등산 암설지형의 유형과 특징)

  • Oh, Jong-Joo;Park, Seoung-Phill;Seong, Yeong-Bae
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.3
    • /
    • pp.253-267
    • /
    • 2012
  • The study looked into the type and characteristics of debris landforms in Mt. Mudeung. By focusing on the representative area, we aimed to categorize the debris landforms based on the morphologic and genetic characteristcis. The types of debris areas in Mt. Mudeung can be divided into the exposed debris type, mixed type of matrix, and the boulder-hidden type. Supply of block in the debris slope area displays different features depending on types of rocks. For the stony slopes of andesite, the block must be moved from the columnar joint or cliff in the upper part. The andesite debris slopes display dominant edge shape while displaying no round shape. The granite stony slopes display dominant round shape and the present exposed slope was assumed to be formed as the core stone which was deep weathered moved along slope during the periglacial era and the matrix was removed after post-glacial era. The movements of blocks are assumed to be caused by solifluction process. The joint area where granite and andesite areas meet, granite is located beneath andesite area, and this implies that blocks were actively freezing and creeping by solifluction and freezing and thawing at that time. It can be assumes that the granite matrix formed plain slope and then andesite boulder covered up the slope. Currently, the blocks in the stony slopes of Mt. Mudeung shows almost no mobility and the stony slopes created under periglacial climate can be considered to be fossil landform.

  • PDF