• Title/Summary/Keyword: freezing analysis model

Search Result 85, Processing Time 0.026 seconds

An experimental study on occurrence of intermediate peaks in ice load signals

  • Ahn, Se-Jin;Lee, Tak-Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.157-167
    • /
    • 2020
  • The purpose of this study is to analyze the relationship between the occurrence of intermediate peak and time duration, and to conduct a review for the causes of the intermediate peak. In this test, ice impact tests were conducted using a bow side shell frame and ice specimen. A total of 70 samples were manufactured. Two types of ice specimen with relatively different surface conditions were used. The criterion for dividing the two types of ice specimen was the different exposure times to room temperature after freezing. This experiment was conducted for each parameter in order to reproduce the actual icebreaking situation. As a result of the analysis, the intermediate peak in the ice load signal have been found to be caused by mechanisms by which the inner surface of broken ice contact with hull immediately after the initial hitting point of ice has been broken.

Fine-Tuning Strategies for Weather Condition Shifts: A Comparative Analysis of Models Trained on Synthetic and Real Datasets

  • Jungwoo Kim;Min Jung Lee;Suha Kwak
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.794-797
    • /
    • 2024
  • Despite advancements in deep learning, existing semantic segmentation models exhibit suboptimal performance under adverse weather conditions, such as fog or rain, whereas they perform well in clear weather conditions. To address this issue, much of the research has focused on making image or feature-level representations weather-independent. However, disentangling the style and content of images remains a challenge. In this work, we propose a novel fine-tuning method, 'freeze-n-update.' We identify a subset of model parameters that are weather-independent and demonstrate that by freezing these parameters and fine-tuning others, segmentation performance can be significantly improved. Experiments on a test dataset confirm both the effectiveness and practicality of our approach.

Performance Analysis of Freezing Desalination System using Seawater Heat Pump (해수 히트펌프를 이용한 냉동법 담수화시스템 개념설계)

  • Lee, Ho-Saeng;Lee, Seung-Won;Yoon, Jung-In;Kim, Hyeon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • The freeze desalination cycle with seawater heat pump system is simulated and designed for the basic data for the design of freeze desalination system. The basic model of seawater heat pump system is refrigeration cycle and indirect freeze desalination method is used for seawater desalination. The cycle performance of seawater heat pump such as COP, compressor work, condensing capacity was analyzed and the desalination performance such as fresh water productivity and energy per unit fresh water productivity was compared with respect to the seawater temperature of condenser inlet and ice ratio in the evaporator. The compressor work and condensing capacity decreased with respect to the decrease of seawater inlet temperature. The energy per unit fresh water productivity in case of $8^{\circ}C$ seawater inlet temperature showed 28.9% lower than that of $20^{\circ}C$.

Numerical Analysis of the Melting Process of Ice Using Plate Heaters with Constant Heat Flux (일정 열유속 조건의 판형 히터에 의한 해빙과정의 수치해석)

  • Kim, Hark-Koo;Jeong, Si-Young;Hur, Nahm-Keon;Lim, Tae-Won;Park, Yong-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.434-440
    • /
    • 2007
  • One of the cold start problems of a FCV is the freezing of the water in the water tank when a FCV is not in operation and the surrounding temperature drops below $0^{\circ}C$. The ice in the tank should be melted as quickly as possible for a satisfactory operation of fuel cell vehicles. In this study, the melting process for the constant heat fluxes of the plate heaters was numerically calculated in the 2-D model of the tank and plate heaters. The enthalpy method and FVM code was used for this analysis. The changes of the temperature with heat fluxes and the heat transfer area could be investigated. The energy balance error was found to increase with the heat flux. From this numerical analysis, the proper heat flux value and some important design factors relating local overheating and pressurization of the water tank could be examined.

Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders

  • Shaw, Ian D.;Andrawes, Bassem
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.147-168
    • /
    • 2017
  • Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.

A SD approach to the Efficiency Improvement of Electric Power Industry in Korea -Focused on the Nuclear Industry (국내 전력산업의 효율성 제고모형에 대한 SD 모형 연구 - 원자력산업을 중심으로)

  • Heo, Hoon;Lee, Myung-Ho
    • Korean System Dynamics Review
    • /
    • v.4 no.2
    • /
    • pp.153-171
    • /
    • 2003
  • In this study, we tried to build a model which can deal with the efficient and effective operation of electric power industry, especially focused on the nuclear industry. Here, SD(system Dynamics) approach is used to visualize the underlying phenomenon of the nuclear power industry. SD is a methodology for studying and managing complex feedback systems, such as one finds in business and other social systems, The span of SD applications has grown extensively and now encompasses work in corporate planning and policy design, public management and policy, biological and medical modeling, energy and the environment. Recently, according to the report from KEPCO(Korea Electric Power Corporation), they are considering delaying a new power plant construction. It may be based upon business fluctuation downsized from Korean economic crisis in 1997 and freezing of construction funds due to unstable foreign exchange rate. At this point, we need desperately a kind of strategic model that would contribute to cope with the current business situation, energy generation, Production, and resulting Pollution. Specifically, this model, using SD approach, starts with the detailed drawing of influence diagram, which describes those relevant key points on nuclear power generation systems in electric power industry of Korea. These include such (actors as the operation of nuclear industry and parameters related to the decision making for business policy. Based upon the above-mentioned influence diagram drawn, we developed SD simulation model to evaluate and analyze strategic management of KBPCO. Based on our analysis, we could demonstrate how simulation model can be applied to the real electric power generation in Korea.

  • PDF

A Study About Critical Flow Characteristics and the Pipeline Network Modeling of a Pressure Regulator (II) - The Influence of a Opening Ratio - (정압기의 임계유동 특성과 배관망해석 모델링에 관한 연구 (II) - 개도비 영향 -)

  • Shin Chang Hoon;Ha Jong Man;Lee Cheol Gu;Her Jae Young;Im Ji Hyun;Joo Won Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1299-1306
    • /
    • 2005
  • The suitable pressure regulator modeling at each opening ratio and pressure ratio is very important to obtain reliable results, especially in small scale pipeline network analysis such as a pressure regulator system. And it is needed to confirm both whether temperature recovery is achieved after passing by the pressure regulator's narrow neck and how much amount of low temperature area that can cause condensate accumulation is distributed by various PCV models and driving conditions. In this research, the numerical model resembling P company pressure regulator that is used widely for high pressure range in commercial, is adopted as the base model of CFD analysis to investigate pressure regulator's flow characteristics at each pressure ratio and opening ratio. And it is also introduced to examine pressure regulator's critical flow characteristics and possibility of condensation or freezing at each pressure ratio and opening ratio. Additionally, the comparison between the results of CFD analysis and the results of analytic solution obtained by compressible fluid-dynamics theory is attempted to validate the results of CFD modeling in this study and to estimate the accuracy of theoretical approach at each pressure ratio and opening ratio too.

Recommended Evacuation Distance for Offsite Risk Assessment of Ammonia Release Scenarios (냉동, 냉장 시스템에서 NH3 누출 사고 시 장외영향평가를 위한 피해범위 및 대피거리 산정에 관한 연구)

  • Park, Sangwook;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.156-161
    • /
    • 2016
  • An accident of an ammonia tank pipeline at a storage plant resulted in one death and three injuries in 2014. Many accidents including toxic gas releases and explosions occur in the freezing and refrigerating systems using ammonia. Especially, the consequence can be substantial due to that the large amount of ammonia is usually being used in the refrigeration systems. In this study, offsite consequence analysis has been investigated when ammonia leaks outdoors from large storages. Both flammable and toxic effects are under consideration to calculate the affected area using simulation programs for consequence analysis. ERPG-2 concentration (150 ppm) has been selected to calculate the evacuation distance out of various release scenarios for their dispersions in day or night. For offsite residential, the impact area by flammability is much smaller than that by toxicity. The methodology consists of two steps as followings; 1. Calculation for discharge rates of accidental release scenarios. 2. Dispersion simulation using the discharge rate for different conditions. This proactive prediction for accidental releases of ammonia would help emergency teams act as quick as they can.

Identification and functional analysis of COLD-signaling-related genes in Panax ginseng

  • Jeongeui Hong;Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.225-231
    • /
    • 2023
  • Cold stress is one of the most vulnerable environmental stresses that affect plant growth and crop yields. With the recent advancements in genetic approaches using Arabidopsis and other model systems, genes involved in cold-stress response have been identified and the key cold signaling factors have been characterized. Exposure to low-temperature stress triggers the activation of a set of genes known as cold regulatory (COR) genes. This activation process plays a crucial role in enhancing the resistance of plants to cold and freezing stress. The inducer of the C-repeatbinding factor (CBF) expression 1-CBF module (ICE1-CBF module) is a key cold signaling pathway regulator that enhances the expression of downstream COR genes; however, this signaling module in Panax ginseng remains elusive. Here, we identified cold-signaling-related genes, PgCBF1, PgCBF3, and PgICE1 and conducted functional genomic analysis with a heterologous system. We confirmed that the overexpression of cold- PgCBF3 in the cbf1/2/3 triple Arabidopsis mutant compensated for the cold stress-induced deficiency of COR15A and salt-stress tolerance. In addition, nuclearlocalized PgICE1 has evolutionarily conserved phosphorylation sites that are modulated by brassinsteroid insensitive 2 (PgBIN2) and sucrose non-fermenting 1 (SNF1)-related protein kinase 3 (PgSnRK3), with which it physically interacted in a yeast two-hybrid assay. Overall, our data reveal that the regulators identified in our study, PgICE1 and PgCBFs, are evolutionarily conserved in the P. ginseng genome and are functionally involved in cold and abiotic stress responses.

A SD approach to the Efficiency Improvement of Electric Power Industry in Korea: Focused on the Nuclear Industry (시스템 다이내믹스(SD)에 의한 국내 전력산업의 효율성 제고에 관한 연구: 원자력산업을 중심으로)

  • Lee, Myoung-Ho;Lee, Hee-Sang;Jang, In-Sung;Choi, Bong-Sik;Huh, Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.2
    • /
    • pp.99-109
    • /
    • 2001
  • In this study, we tried to build a model which can deal with the efficient and effective operation of electric power industry, especially focused on the nuclear industry. Here, SD (System Dynamics) approach is used to visualize the underlying phenomenon of the nuclear power industry. SD is a methodology for studying and managing complex feedback systems, such as one finds in business and other social systems. The spend of SD applications has grown extensively and now encompasses work in corporate planning and policy design, public management and policy, biological and medical modeling, energy and the environment. Recently, according to the report from KEPCO (Korea Electric Power Corporation), they are considering delaying a new power plant construction. It may be based upon business fluctuation downsized from Korean economic crisis in 1997 and freezing of construction funds due to unstable foreign exchange rate. At this point, we need disparately a kind of strategic model that would contribute to cope with the current business situation, energy generation, production, and resulting pollution. Specifically, this model, using SD approach, starts with the detailed drawing of influence diagram, which describes those relevant key points on nuclear power generation systems in electric power industry of Korea. These include such factors as the operation of nuclear industry and parameters related to the decision making for business policy. Based upon the above-mentioned influence diagram drawn, we developed SD simulation model to evaluate and analyze strategic management of KEPCO. Based on our analysis, we could demonstrate how simulation model can be applied to the real electric power generation in Korea.

  • PDF