• Title/Summary/Keyword: freezing analysis model

Search Result 85, Processing Time 0.025 seconds

Finite Element Analysis of Concrete Railway Sleeper Damaged by Freezing Force of Water Penetrated into the Inserts (고속철도 콘크리트 궤도 매립전 내 침투수의 결빙압에 의한 균열손상해석)

  • Moon, Do-Young;Zi, Goang-Seup;Kim, Jin-Gyun;Jang, Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.240-247
    • /
    • 2011
  • Finite element analysis was undertaken to investigate the effect of freezing force of water unexpectedly penetrated into inserts used in railway sleeper on pullout capacity of anchor bolts for fixing base-plate onto concrete sleeper. Based on the in-situ investigation and measurement of geometry of railway sleeper and rail-fastener, the railway sleeper was modeled by 3D solid elements. Nonlinear and fracture properties for the finite element model were assumed according to CEB-FIP 1990 model code. And the pullout maximum load of anchor bolt obtained from the model developed was compared with experimental pullout maximum load presented by KRRI for verification of the model. Using this model, the effect of position of anchor bolt, amount of fastening force applied to the anchor bolt, and compressive strength of concrete on pull-out capacity of anchor bolts installed in railway sleeper was investigated. As a result, it is found that concrete railway sleepers could be damaged by the pressure due to freezing of water penetrated into inserts. And the pullout capacity of anchor bolt close to center of railway is slightly greater than that of the others.

Optimal Design of Blowing Plates to Minimize the Freezing Phenomena in the Freezer of a Side-by-side Refrigerator (양문 여닫이형 냉장고 냉동실 결빙 최소화를 위한 토출구형상 최적설계)

  • Kwak, S.M.;Lee, Y.H.;Kum, J.S.;Kim, N.S.;Kim, S.B.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.17-22
    • /
    • 2003
  • As side-by-side refrigerators came into existence, there has been a growing concern about the free%ins-up of the vital equipment in a walk-in freezer. Due to a bad performance, customers are experiencing too much frustration. In order to minimize the freezing phenomena, the numerical simulation has been performed on the characteristics of cold air flow in a side-by-side refrigerator. The flow field has been simulated with a standard $k-\varepsilon$ turbulent model and a SIMPLE algorithm based on the finite volume method. Through the results of the analysis of the pattern of cold air flow, finally the shape of outlet for cold air flow was modified. The present model was compared with the modified model. The latter was better than the former in minimizing the freezing phenomena.

  • PDF

Determination of the Frozen Penetration Depth of a Freezing Soil Medium including a Pipeline in a Closed System (파이프라인이 매설된 폐쇄형 동결토의 동결심도 결정)

  • Song Weon-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.451-458
    • /
    • 2004
  • The study was focused on the development of computational scheme in three dimensional configurations by applying effective heat capacity model to the numerical procedure in order to predict the temperature profiles of a buried pipeline and the frozen penetration depth(FPD) of a freezing soil medium. To realize this, the investigator conducted the unsteady state heat transfer analysis, using the commercial code ABAQUS, for the freezing granite soil medium including a pipeline in a closed system. The proposed model took into consideration the phase change effect of in situ pore water in the frozen fringe. The comparison of results obtained by the proposed model and the actual performances was valuable in establishing a level of confidence in the application of introduced theory.

A Study on the Prediction and Reduction of Residual Stress in Glass (I): Analysis of Residual Stress in Glass by Instant Freezing Model (유리의 잔류응력 예측 및 감소화 방안 연구(I): 순간동결모델에 의한 유리의 잔류응력 해석)

  • 이재춘;백태현
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.902-910
    • /
    • 1994
  • Residual stress measurements were made for cylindrical glass rods to compare experimental results with the calculated values obtained by Instant Freezing Model. According to the photoelastic measurements, the stress ratio of surface compression and center tension was increased from 1.4 to 2.0 as the heat-treatment temperature was lowered, the fictitious forzen temperature was found to be closer to the heat-treatment temperature and the fictitious coefficient was increased.

  • PDF

A New IEEE 802.11 DCF Utilizing Freezing Experiences in Backoff Interval and Its Saturation Throughput

  • Sakakibara, Katsumi;Taketsugu, Jumpei
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.43-51
    • /
    • 2010
  • IEEE 802.11 defines distributed coordination function (DCF), which is characterized by CSMA/CA and binary exponential backoff (BEB) algorithm. Most modifications on DCF so far have focused on updating of the contention window (CW) size depending on the outcome of own frame transmission without considering freezing periods experienced in the backoff interval. We propose two simple but novel schemes which effectively utilize the number of freezing periods sensed during the current backoff interval. The proposed schemes can be applied to DCF and its family, such as double increment double decrement (DIDD). Saturation throughput of the proposed schemes is analyzed by means of Bianchi's Markovian model. Computer simulation validates the accuracy of the analysis. Numerical results based on IEEE 802.11b show that up to about 20% improvement of saturation throughput can be achieved by combining the proposed scheme with conventional schemes when applied to the basic access procedure.

Investigation on Freezing in the Freezing Compartment of a Side by Side Refrigerator (양문형 냉장고 냉동실 결빙원인해석 및 최소화 방안)

  • Kim, Y.K.;Jung, H.Y.;Choi, Y.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.34-39
    • /
    • 2010
  • A side by side refrigerator is popularly used one among electric home appliances according to the rise of the customer's living standard. But the frost problem in freezing compartment comes out whenever we develop the high quality refrigerator. In this research, internal flow simulation and temperature measurement were carried out by using CFD and T-type thermocouple respectively in order to understand freezing mechanism. It was revealed that the amount of frost beneath the 1st and 2nd shelves is approximately 40% of total frost and the cause of frost generation is due to bad circulation of low speed cold flow. Using this analysis, the shapes of outlets under shelves are modified. So, the amount of frost in this modified model decreases 6% comparing to original one.

Analysis of Geothermal Melting System Conductivity for Improving Road Safety (도로주행 안정성 향상을 위한 지열 융설시스템 열전도 분석)

  • Lee, Seok-Jin;Kim, Bong-Chan;Lee, Seung-Ha;Seo, Un-Jong;Kim, Jin-Han;Lee, Joo-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Sliding accidents on the road have a high percentage by road freezing, especially, they often have appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out; pavement materials of concrete and asphalt where the system is buried. The heat transfer simulation is essential when the geothermal snow melting system is applied according to heating exchanger pipe placed in the lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. Many variables are discovered from numerical analyses under the same conditions with model test.

  • PDF

Experimental and Numerical Study on Hydro-thermal Behaviour of Artificial Freezing System with Water Flow (물의 흐름을 고려한 인공동결 시스템의 열-수리 거동 연구)

  • Jin, Hyunwoo;Lee, Jangguen;Ryu, Byung Hyun;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.17-25
    • /
    • 2020
  • The artificial ground freezing method is a ground amelioration technology that does not have a permanent effect on the ground. One of the key factors that determine the efficiency and design criteria of the artificial ground freezing is the groundwater flow. Therefore, in order to accurately evaluate the behavior of the artificial ground freezing, studies on the effect of water flow on the formation of ice walls must be preceded. In this paper, experimental and numerical analyses were conducted using only pure water to maximize the effect of water flow on the formation of ice walls. A hydro-thermal coupled model for freezing behavior was proposed and the accuracy of the model was verified. Through the numerical and experimental studies, the flow rate dominates not only the formation time but also the shape of the ice wall. In addition, this study proposes a method to indirectly predict the ice wall formation time, which is expected to be highly useful for a practical application where it is difficult to visually identify ice walls.

Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow

  • Jin, Hyunwoo;Go, Gyu-Hyun;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-445
    • /
    • 2021
  • Artificial ground freezing (AGF) is a commonly used geotechnical support technique that can be applied in any soil type and has low environmental impact. Experimental and numerical investigations have been conducted to optimize AGF for application in diverse scenarios. Precise simulation of groundwater flow is crucial to improving the reliability these investigations' results. Previous experimental research has mostly considered horizontal seepage flow, which does not allow accurate calculation of the groundwater flow velocity due to spatial variation of the piezometric head. This study adopted vertical seepage flow-which can maintain a constant cross-sectional area-to eliminate the limitations of using horizontal seepage flow. The closure time is a measure of the time taken for an impermeable layer to begin to form, this being the time for a frozen soil-ice wall to start forming adjacent to the freeze pipes; this is of great importance to applied AGF. This study reports verification of the reliability of our experimental apparatus and measurement system using only water, because temperature data could be measured while freezing was observed visually. Subsequent experimental AFG tests with saturated sandy soil were also performed. From the experimental results, a method of estimating closure time is proposed using the inflection point in the thermal conductivity difference between pore water and pore ice. It is expected that this estimation method will be highly applicable in the field. A further parametric study assessed factors influencing the closure time using a two-dimensional coupled thermo-hydraulic numerical analysis model that can simulate the AGF of saturated sandy soil considering groundwater flow. It shows that the closure time is affected by factors such as hydraulic gradient, unfrozen permeability, particle thermal conductivity, and freezing temperature. Among these factors, changes in the unfrozen permeability and particle thermal conductivity have less effect on the formation of frozen soil-ice walls when the freezing temperature is sufficiently low.