• Title/Summary/Keyword: freezing, thawing

Search Result 935, Processing Time 0.032 seconds

Effect of Cold Adaptation on the Improved Viability of Lactobacillus crispatus KLB46 (Lactobacillus crispatus KLB46의 생균제제화를 위한 저온 전처리시 증지의 효과)

  • 김주현;이석용;장정은;김승철;윤현식;소재성
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.626-631
    • /
    • 2001
  • Lactobacilli have been considered to play important roles in the health of human vagina. They secrete inhibitory substances to prevent vaginal infection by pathogenic organisms. In a previous study, we have isolated several lactobacilli from Korean woman and one of them (KLB46) was selected and indentified as Lactobacillu crispatus which showed high antimicrobial activity. In this study. cold adaptation prior to subsequent stresses exposure was examined whether L. crispatus KLB46 maintain the viability better than the non-adapted calls under stresses. For pharmaceutical formulation, the lyophilization process is required where stresses such as freezing/thawing and dehydration are routinely applied. Formulated L. crispatus KLB46 can be used for ecological treatment of bacterial vaginosis. The response of cold-adapted cells to other environmental stresses such as acid, heat, ethanol, NaCl, and H$_2$O$_2$ was also examined. The results showed that cold-adapted cells maintained higher survival rate compared with the non-adapted cells (freezing-thawing. 3-folds; dehydration: 3-folds; acid, 3-folds; heat, 10-folds). However, we did net observe any positive effect of cold adaptation on other stresses such as ethanol, NaCl and H$_2$O$_2$. When chloramphenicol was added during cold adaptation, adaptation effect was abolished. This confirms that de novo protein synthesis is necessary during the adaptation process. Moreover, we have identified cold shock protein homolog that codes for a major cold shock protein by PCR amplification using degenerate primers.

  • PDF

A Study for the Physical Properties of Artificial Admixtured with β-NSF Base & Vinsol Base Surfactants (β-NSF계와 빈졸계 계면활성제로 변성된 인조석의 물성)

  • Cho, Heon-young;Park, Seong-ki;Suh, Jung-mok;Kim, Jin-man
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.592-598
    • /
    • 1999
  • Exterior finishing materials of artificial stones are manufactured with the mixture of water, cement, stone powder and light-weight aggregate. In this research, we tried to find a way of increasing the physical properties and decreasing the manufacturing cost of artificial stone. So, we used ${\beta}$-NSF base surfactant and vinsol base surfactant to the artificial stone mixture instead of light-weight aggregate. The optimum dosage of the ${\beta}$-NSF and vinsol surfactants for artificial stone are found to be 1.0 wt % of cement, respectively. The physical properties increased ca. 20% and the durability for freezing & thawing of the new artificial stone increased ca. 300%. While the manufacturing cost of the new artificial stone decreased as much as 30%.

  • PDF

Characteristics of Asphalt Concrete using Waste Foundry Sand (주물고사 첨가 아스팔트 콘크리트의 특성에 관한 연구)

  • Kim, Kwang-Woo;Ko, Dong-Hyuk;Choi, Dong-Chon;Kim, Sung-Won;Kim, Joong-Yul
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.105-116
    • /
    • 2001
  • This study was performed to evaluate the characteristics of waste foundry sand (WFS) and the asphalt mixture made of a foundry waste sand. To estimate the applicability of WFS, chemical and physical properties were measured by XRF(X-ray fluorescent), and SEM(Scanning electronic microfilm). To improve the stripping resistance of WFS asphalt mixture, anti-stripping agents (a hydrated lime and a liquid anti-stripping agent) were used. To improve tensile properties and durability of WFS asphalt concrete mixture, LDPE(low-density polyethylene) was used as an asphalt modifier Marshall mix design, indirect tensile strength, tensile strength ratio(TSR) after freezing and thawing, moisture susceptibility and wheel tracking tests were carried out to evaluate performance of WFS asphalt concrete. Comparing with conventional asphalt concrete, WFS asphalt concretes showed similar or the better qualify in mechanical properties, and satisfied all specification limits. Therefore, it Is concluded that waste foundry sand can be recycled as an asphalt pavement material.

  • PDF

A Study of Landfill Coyer Liners by Freezing/Thawing (동결/융해에 따른 폐기물 매립지 복토층 연구)

  • Jai-Young Lee
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.103-109
    • /
    • 1996
  • The cover liners at municipal and hazardous waste landfill is not emphasized as much as the bottom liners. However, one of the most effective reason of landfill destroy is the cover liner failure. The cover system at municipal and hazardous waste landfill, 1 perform the following functions, at minimum: promote surface runoff, impede infiltration, protect settlement in the landfill, and provide a buffer from surface exposure of the waste. This research was to expand the existing knowledge base of landfill cover liner behavior during period of freeze/thaw Also, the great Lysimeter was built in the laboratory to provide as much as same condition with the field and three designs were simulated by actual cover materials. The result of simulation indicated the clay was effected by freezing/thawing. The degradation of cover liners in the frost penetration affects the physical, engineering properties of clay. these factors may consider to design and construct of the landfill. This paper provides the description of testing cover liners, experimental results and a discussion of the results of the simulation.

  • PDF

Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag (플라이애시와 고로슬래그 미분말을 혼합 사용한 지오폴리머 모르타르의 강도발현 및 내구성)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the strength development and durability of geopolymer mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless geopolymer concrete. In order to compare with the geopolymer mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to freezing-thawing of the geopolymer mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, and improve the resistance of freezing-thawing of approximately 20%, but promote the velocity of carbonation of 2.2~3.5 times.

Assesment of Applicability of Recycled Aggregates for Highway Pavement Materials (도로포장 재료로서 폐콘크리트 재생골재의 활용성 연구)

  • Kim, Kwang-Woo;Ryu, Neung-Hwan;Doh, Young-Soo;Li, Xiang-Fan
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.103-112
    • /
    • 2001
  • This study was performed to evaluate applicability of recycled aggregates as subbase and surface concrete materials for cement concrete pavement. Laboratory compaction test, CBR test and plate load bearing test were conducted to evaluate applicability for pavement subbase materials. Recycled concrete for surface course was manufactured with a design strength of $280kgf/cm^2$. Normal coarse aggregate was substituted with recycled aggregates with five different ratios, 0%, 20%, 40%, 60% and 80% for recycled concrete mixes. Fresh concrete Properties, concrete strength properties for the five substitution percentages of recycled aggregates after 28-day curing and freezing-and-thawing resistance were evaluated experimentally. Based on the experimental results, it was concluded that the recycled aggregate was the material good enough to use for subbase material, and 40% or lower substitution ratio was an appropriate percentage of recycled aggregates replacement for surface concrete.

  • PDF

Evaluation of Applicability of penetrating-type Nano-Coat for Preventing Deterioration of Concrete (침투형 Nano-Coat를 이용한 콘크리트 열화 방지 적용성 평가)

  • Lee, Jun Hee;Kim, Jo Soon;Sim, Yang Mo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • PURPOSES : Infiltration of moisture, polluted material, and deicer into concrete, accompanied by freeze and thaw can cause significant deterioration of concrete pavement. In order to protect concrete from deterioration, it is necessary to prevent the infiltration of these concrete external materials. The moisture-repellent agent, which is a surface treatment and maintenance material added to concrete structures to render them water resistant, has advantages such as prevention of water infiltration and security against air permeation. Nano-coat, which is referred to as silicon hydride, is typically used as a moisture-repellent agent. Therefore, in this study, an attempt is made to use penetration-type Nano-coat as an alternative in order to evaluate its applicability through environmental resistance tests. METHODS : This study aimed to evaluate the applicability of penetration-type Nano-coat, which can provide water repellency to concrete, in concrete pavements, through various environmental resistance tests such as freezing and thawing resistance, chloride ion penetration resistance, and surface scaling resistance tests. The applicability of penetration-type Nano-coat was demonstrated based on the specification of KS F 2711, KS F 2456, and ASTM C 672. RESULTS :In the case of penetration-type Nano-coat applied on sound concrete, an increase in concrete durability was demonstrated by the negligible chloride ion penetrability and the absence of scaling, as revealed by visual observation of the surface, after 50 cycles of scaling resistance test. In addition, test result of the application of penetration-type Nano-coat on deteriorated concrete established that concrete surface pretreated by grinding provided improved durability than non-treated concrete. CONCLUSIONS :This study indicates that penetration-type Nano-coat is applicable as an effective alternative, to increase the durability of concrete structures. In addition, it was known that pretreatment of deteriorated concrete surface, such as grinding, is required to improve the long-term performance of concrete pavement.

Cryopreservation of the Human Adult Ovarian Cortical Tissues by Vitrification (여성의 난소 피질조직의 초자화 냉동보존)

  • Lee, K.A.;Lee, S.H.;Ha, S.D.;Yoon, S.J.;Ko, J.J.;Lee, W.S.;Yoon, T.K.;Cha, K.Y.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.251-256
    • /
    • 1999
  • The present study was conducted to evaluate whether vitrification could be used for ovarian tissue preservation. The important issue here is that the vitrification is very simple, easy, and economical compared to the conventional cryopreserving method that using automatic freezing instrument. Human ovarian cortical tissues were cryopreserved by vitrification with 5.5 M ethylene glycol and 1.0 M sucrose as cryoprotectant. Three points of temperature ($4^{\circ}C$, room temperature, and $37^{\circ}C$) and two points of duration (5 or 10 minutes) for cryoprotectant treatment were examined to determine the best condition for vitrification of the human ovarian cortical tissues. After thawing, viability of the isolated primordial follicles was examined by dye-exclusion method. Histological appearance of tissues before and after the cryopreservation was evaluated. There was no toxic effect of the 5.5 M ethylene glycol on the primordial follicles. However, when the tissues were treated with cryoprotectant at $37^{\circ}C$ for 10 minutes and exposed to liquid nitrogen, it seems likely that there is certain deleterious effects on the viability of the primordial follicles. The highest viability of the primordial follicles was obtained with the treatment of cryoprotectant at room temperature for 10 minutes. Follicles and oocytes survived after freezing and thawing had the similar normal shapes as was seen in the specimens before cryopreservation. It would be useful to apply vitrification in establishing ovarian tissue banking for clinical purposes.

  • PDF

Lining of Reinforced Spun Concrete Pipes using Polymer-Modified Mortars (폴리머 시멘트 모르타르를 이용한 원심력 철근콘크리트관의 라이닝)

  • 조영국
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.406-413
    • /
    • 2001
  • Up to this day, reinforced spun concrete pipes have been widely used as drain pipes. However, many reinforced spun concrete pipes are exposed to the deteriorated environment such as freezing-thawing damage and chemical attack by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar using polymer dispersions as cement modifier on the development in durability of reinforced spun concrete pipe. The polymer-modified mortars were prepared with various polymer types and polymer-cement ratios, and tested for compressive and flexural strengths, acid, freezing-thawing, and heat resistances. And then, the reinforced spun concrete pipe product lined by polymer-modified mortars was tested for adhesion in tension and surface conditions according to curing temperatures in the field. From the test results, it is apparent that the polymer-modified mortars have good mechanical properties and durability as a lining material. In practice, all polymers can be used as lining the materials for reinforced spun concrete pipe, and types of polymer, and polymer-cement ratio and curing conditions are controlled for a good lining product.

Fabrication and Characterization of Silk/PVA Hydrogels by Sonication and Freezing-Thawing Technique (초음파와 동결/융해에 의한 실크/PVA 하이드로젤의 제조 및 특성 평가)

  • Lee, Ok Joo;Kim, Jung-Ho;Ju, Hyung Woo;Moon, Bo Mi;Park, Hyun Jung;Sheikh, Faheem A.;Park, Chan Hum
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.717-721
    • /
    • 2013
  • Biomaterials like silk fibroin (SF) and poly(vinyl alcohol) (PVA) have received increasing attention in biomedical applications because of their attractive properties such as hydrophobicity and biocompatibility. In this study, efficient systems consisting of interpenetrating SF/PVA hydrogels were prepared as potential candidate for wound dressing applications. A simple approach consisting of sonication and a freezing-thawing technique was adopted to fabricate the hydrogels. Different blend ratios consisting of SF (100, 75, 50, 25 and 0%) with respect to the weight of PVA were prepared. The produced hydrogels were characterized for physico-chemical investigations using various states of techniques like; FE-SEM, TGA, FTIR and tensile strength. The addition of PVA to SF was proved to be beneficial in terms of reducing the pore size and swelling ratio of hydrogels. The mechanical property of SF had been increased by addition of PVA. These results show that SF/PVA hydrogels may serve as potential candidates for wound dressing application.