• Title/Summary/Keyword: freezing, thawing

Search Result 935, Processing Time 0.025 seconds

Effect of Supplementation of Trehalose, Glycerol on Conventional Freezing and Vitrification of Boar Sperm

  • Choi, Sun-Ho;Lee, Mi-Jin;Lee, Kyung-Mi;Sa, Soo-Jin;Kim, Hyun-Jong;Jin, Hyun-Ju;Song, Yong-Sup;Park, Jun-Cheol
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.397-401
    • /
    • 2014
  • The boar sperm has more lipid droplets and specialty of seminal plasma compared with other species, causing difficulties of freezing sperm and decreases for the utilization of frozen semen into the artificial insemination. However, several studies reported significant results for the recovery of sperm motility and reproductive by addition of cryoprotectants and seminal plasma after thawing. This study was designed to investigate the effects of supplementation of trehalose or glycerol in the LEY (lactose and egg yolk in BTS) solution for the conventional freezing and vitrification process. Two boars aged 16 months were used to collect semen for 2 times in a week. The samples were allotted to 3 freezing solutions (LEY + glycerol 10.5% + OEP 1.5%, LEY + trehalose 1M + OEP 1.5%, and sucrose 1.5M + trehalose 1 M + OEP 1.5%) after centrifugation at 800 g for 10 minutes. Semen was equilibrated in freezing solutions for 10 minutes and injected into plastic straws with 2~3 air bubbles to minimize freezing damages. Vitrification was performed to locate sperm in 5 cm above $LN_2$ for 5 minutes, and the conventional freezing was conducted with an automatic freezer. Motility and survival rates were measured by CASA (Computer assisted sperm an alyzing system) and FITC (Fluorescein isothiocyanate), respectively after thawing semen at $50^{\circ}C$ for 12 seconds. The results were analyzed by ANOVA with STATVIEW statistical program. The vitrificatioin solution (LEY + 10.5% glycerol + 1.5% OEP) presented higher motility (20.9%) than other solutions while the solution (LEY + 1M trehalose + 1.5% OEP) showed the lowest (motility : 5.2%). However, survival rates of vitrified sperms detected by FITC showed 1~4% live sperms in almost of dead sperms at all vitrification solutions' groups, but survival rate of freezing solution of LEY + 1M trehalose + 1.5% OEP LEY and LEY + 10.5% glycerol + 1.5% OEP were showed 49%, and 79%, respectively. There were differences (P<0.05) survival rate of conventional freezing in LEY + 10.5% glycerol + 1.5% OEP and LEY + 1M trehalose + 1.5% OEP and the remaining showed no differences. The results suggested that vitrified boar semen was not enough to be utilized for the artificial insemination, but it showed possibility to utilize for ICSI and conventional freezing with glycerol would be useful method for artificial insemination in pig while we choose the outstanding semen against tolerance to freezing damages.

The Physical Properties of Polymer Concrete for Ultra Thin Bridge Deck Pavement (초박층 교면포장용 폴리머 콘크리트의 물리적 특성)

  • Kim, Hyeon Jun;Son, Yeong Hyo;Han, Bum Jin;Jung, Ji Eun;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • This research was performed to identify physical properties of polysulfide epoxy polymer concrete for ultra-thin bridge deck pavement, and improve domestic applicability. With the optimum mix ratio determined from mixing experiments of polymer concretes, compressive, flexural, and bond strength were tested to identify its strength properties along with the freezing-thawing resistance test to evaluate its durability in harsh environments. As a result, the tested polymer concretes showed excellent performance in strength and deflection characteristic and all tested strength satisfied the criteria of American Concrete Institute. Moreover, it had better performance under variable temperatures comparing to other existing pavement materials. By the results of freezing-thawing resistance test and strength measurement for specimens underwent the freezing-thawing process, it can be judged that there is no such problem to the concrete's durability. In conclusion, the newly developed polymer concrete in this research has appropriate properties for use in ultra-thin pavement on bridge deck, and moreover it has superior applicability in comparison with former materials due to its improved temperature sensitivity.

Mechanical Properties and Resistance to Freezing and Thawing of the Recycled Aggregate Concrete with Metakaolin (메타카올린을 혼합한 재생골재 콘크리트의 역학적 특성 및 동결융해 저항성)

  • Moon, Han-Young;Kim, Yang-Bae;Moon, Dae-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.270-278
    • /
    • 2005
  • Recycled aggregate concrete has lower strength and durability compared to concrete with natural aggregate. Therefore, metakaolin is used to improve the properties of recycled aggregate concrete. Main components of metakaolin are $SiO_2$ and $Al_2O_3$. and specific surface area is 9 times larger than that of ordinary portland cement. Quality of demolished-recycled aggregate(DRA) satisfies the type 1 of KS F 2573, but quality of source-recycled aggregate(SRA) does not satisfy with the type 2 of KS F 2573. When metakaolin was replaced with 20% of cement, compressive strength of concrete with SRA and DRA develops about 40~64% of control concrete. Water absorption ratio was reduced about 2% by replacing 20% metakaolin and it represents low compared to the natural aggregate concrete without metakaolin. In addition, the resistance to freezing and thawing, of concrete with DRA is indicated to remarkably enhanced due to the contribution of metakaolin. However, when metakaolin is replaced with 20% of cement, relative dynamic modulus of elasticity of concrete with SRA was below 60% at 210 freezing and thawing cycles.

Assessing the Use of 5 ml Straws in the Cryopreservation of Boar Semen (돼지 정자 동결보존에 있어 5 ml straw의 한계성 극복)

  • Kim, Beom-Gi;Ham, Hyung-Bin;Kim, Sang-Hyeon;Son, Jung-Ho;Chung, Ki-Hwa
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.77-81
    • /
    • 2020
  • The aim of this study was to overcome some of the limiting factors that the maxi cryopreservation straw of 5 ml presents in processing boar semen. Cryopreservation of semen samples was conducted in 0.5 ml and 5.0 ml straws at two freezing rates: -140℃ in 8 minutes and 30 seconds (FR-1) and -140℃ in 14 minutes (FR-2). The straws were then thawed and the semen parameters were compared by Computer Assisted Sperm Analysis, and sperm morphology and acrosome status were examined by Coomassie blue staining. The effects of different thawing temperatures and durations were also compared, namely 37℃ for 115 sec, 50℃ for 45 sec, or 70℃ for 25 sec. In general, the FR-1 group showed higher (p<0.05) sperm viability and motility than the FR-2 group in the 5.0 ml straws. Compared to other ranges, thawing at 50℃ for 45 sec showed the highest sperm viability and motility (68.4±3.6% and 69.5±2.2%, p<0.05), suggesting that thawing temperature should be adjusted concurrently with freezing rate. Sperm morphology and acrosome integrity did not significantly differ among the groups (p>0.05). The data obtained in this study suggest that improving the freezing-thawing protocol for one artificial insemination dose straws (5.0 ml) retains the sperm's parameters from 0.5 ml cryopreservation, and is more convenient to handle, which could result in enhanced reproductive performance.

Characterization of Freezing-Thawing on the Artificial Weathering of $TiO_2$ Loaded Granite and Their Physical Property ($TiO_2$가 담지된 화강암의 인공풍화에 미치는 수분의 동결-융해의 평가와 물리적 성질)

  • Shon, Byung-Hyun;Jung, Jong-Hyeon;Kim, Hyun-Gyu;Choung, Young-Hean;Cho, Ki-Chul;Oh, Kwang-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.183-190
    • /
    • 2006
  • An experimental study was conducted to evaluate the effect of freezing-thawing and air pollutants on the weathering of $TiO_2$ loaded granite. And the granite was coated with $TiO_2$ catalyst and tested. After freezing-thawing and air pollutants experiments the mineral compositions of the granite surface were lower then that of the fresh granite. Density of the weathered granite was steadily decreased from $2.60g/cm^3\;to\;2.55{\sim}2.56g/cm^3$, but absorption ratio and porosity were slightly increased. From these results, it was expected that granite could be weathered by freezing-thawing md air pollutants. In the case of $TiO_2$ was coated to the granite, the compressive strength and absorption ratio were slightly enhanced compared to the $TiO_2$ non-coated granite. Therefore, the $TiO_2$ coating method tested in this study considered to be a viable method to assist in the conservation of granite from environmental contaminants.

Simulation of Spatio-Temporal Distributions of Winter Soil Temperature Taking Account of Snow-melting and Soil Freezing-Thawing Processes (융설과 토양의 동결-융해 과정을 고려한 겨울철 토양온도의 시공간 분포 모의)

  • Kwon, Yonghwan;Koo, Bhon K.
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.945-958
    • /
    • 2014
  • Soil temperature is one of the most important environmental factors that govern hydrological and biogeochemical processes related to diffuse pollution. In this study, considering the snowmelting and the soil freezing-thawing processes, a set of computer codes to estimate winter soil temperature has been developed for CAMEL (Chemicals, Agricultural Management and Erosion Losses), a distributed watershed model. The model was calibrated and validated against the field measurements for three months at 4 sites across the study catchment in a rural area of Yeoju, Korea. The degree of agreement between the simulated and the observed soil temperature is good for the soil surface ($R^2$ 0.71~0.95, RMSE $0.89{\sim}1.49^{\circ}C$). As for the subsurface soils, however, the simulation results are not as good as for the soil surface ($R^2$ 0.51~0.97, RMSE $0.51{\sim}5.08^{\circ}C$) which is considered resulting from vertically-homogeneous soil textures assumed in the model. The model well simulates the blanket effect of snowpack and the latent heat flux in the soil freezing-thawing processes. Although there is some discrepancy between the simulated and the observed soil temperature due to limitations of the model structure and the lack of data, the model reasonably well simulates the temporal and spatial distributions of the soil temperature and the snow water equivalent in accordance with the land uses and the topography of the study catchment.

A Study on the Resistance of Freezing-Thawing for the Material of Concrete or Asphalt Using Smashed Rock (쇄석을 이용한 콘크리트 및 아스팔트용 재료의 동결융해 저항성)

  • Kim, Young-Su;Bang, In-Ho;Heo, No-Young;Lee, Jea-Ho;Choi, Jeong-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.35-47
    • /
    • 2002
  • Soil and rock were yielded during construction of subway in Taegu. Produced rock is a kind of a sedimentary rock with low strength and low durability of shrinkage. So it is difficult using for resources engineering. But in our country, it is very important to use material resources due to lack of natural resources. In this study, after cracking sedimentary rock like black shale and red shale, they are compared with granite which usually used road constriction field to investigate property of use for road construction. Consequently, the engineering character of origin rock is satisfactory, but the soundness test, black shale and red shale are less than KS 12.9%, 37.5% respectively. The result of concrete freezing-thawing test shows that the strength among three materials is not a wide difference but red shale has relatively low strength. The result of asphalt freezing-thawing test with 50 cycles indicates that the stability of red shale in lower than KS 484~561kg on base course, 336~375kg on surface course respectively. A further research should be needed for propriety to the material of shale.

  • PDF

Evaluation of Deicing Performance and Effects of Deicers of the Winter Season (동절기의 융빙제들의 융빙 성능 및 영향 평가)

  • Doh, Young-Soo;Lee, Byeong-Duck;Choi, Kwang-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.149-158
    • /
    • 2008
  • This study was estimated on performance of deicers, corrosion inhibitors and low corrodible deicer used for removal of snow or ice on the road and on influence on structure. The weight loss rate after freezing and thawing of low corrodible deicer is lower than one of deicer, corrosion inhibitors and these combination. Relative dynamic elastic modulus of all except water, low corrodible deicer and NaCl+JF-1004 was radically reduced after freezing and thawing 150 cycles. And concretes after freezing and thawing were showed severe surface damage. It was found that individual use of low corrodible deicer and corrosion inhibitors had a problem of field application because of lack of early ice melting effect and considerably low durability. Products combined with NaCl was showed rapid weight loss by metal corrosion. Therefore, It will need to circumspectly select combination of deicers having low effect on concrete pavement and bridge if possible.

  • PDF

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.

Evaluation for Long Term Drying Shrinkage and Resistance to Freezing and Thawing of Hybrid Fiber Reinforced Concrete (하이브리드 섬유보강 콘크리트의 장기 건조수축 및 내동해성 평가)

  • Kim, Yo-Seb;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.60-66
    • /
    • 2019
  • Many researches have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Researches on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. Therefore, the purpose of this research is to estimate the compressive strength, long term drying shrinkage, and resistance to freezing and thawing of hybrid fiber reinforced concrete(HFRC) using amorphous steel fiber and polyamide fiber as one of organic fibers. For this purpose, HFRCs containing amorphous steel fiber and polyamide fiber were made according to their total volume fraction of 1.0% for target compressive strength of 40 and 60 MPa, respectively, and then the compressive strength, length change, and resistance to freezing and thawing of these were evaluated. As a result, the long term length change ratio of HFRC used in this study decreased by more than 30%, 25% than plain concrete at 365 and 730 days, respectively, and the durability factor of HFRC was very excellent as more than 90%.