• Title/Summary/Keyword: freezing, thawing

Search Result 935, Processing Time 0.028 seconds

Mechanical Properties of Very Rapid Hardening Polymer Mortar for Concrete Repair (보수용 초속경 폴리머 모르타르의 역학적 특성)

  • Hong, Kinam;Shin, Junsu;Han, Sanghoon;Seo, Dongwoo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.31-37
    • /
    • 2014
  • In this study, mechanical properties of Very-Rapid Hardening Polymer (VRHP) mortar were investigated. To do it, 75 VRHP mortar specimens were tested by the compressive test, bending test, bonding test, freezing and thawing test, length variation test, and water absorption test. From the test results, it was confirmed that the bond strength of VRHP was higher than that of normal concrete by 50 %, and the resistance of freezing and thawing of VRHP was more excellent than normal concrete. In addition, length variation ratio and water absorption ratio of VRHP were smaller than those of normal concrete by 20 %. Therefore, It should be mentioned that VRHP can be successfully used as the material for repairing the crack of concrete structure.

Strength Development and Freeze-Thaw Resistance of Concrete Incorporating High Volume Blast-Furnace Slag Subjected to Initial Frost Damage (초기동해를 받은 고로슬래그 다량 혼입 콘크리트의 강도발현 및 동결융해 저항성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.79-87
    • /
    • 2011
  • Concrete incorporating high volume blast-furnace slag placed in cold weather regions might be in danger of initial frost damage because dependently on the mix proportions, the setting and the hardening would be remarkably delayed. Therefore, this study investigated to effect of the degree of frost on the strength development and the resistance to freezing and thawing of the concrete incorporating blast-furnace slag when being subjected to freeze at early age. As the experimental results, the concrete incorporating blast-furnace slag attacked by initial frost damage showed the remarkable reduction of both the compressive strength development and the resistance to freezing and thawing. Especially, the resistance to freezing-thawing of the concrete incorporating high volume blast-furnace slag became much lower than that of the normal concrete.

  • PDF

Separation Performance and Application of Sericin Protein in Silk Degumming Solution(2) (실크 정련 세리신 단백질의 분리특성과 응용(2))

  • Cha, Chin-U;Park, In-Woo;Bae, Kie-Seo;Hong, Young-Ki;Lee, Seo-Hee;Kim, Yong-Duck
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.132-139
    • /
    • 2010
  • Sericin pulverization process was applied by freezing-thawing of sericin protein concentration solution and physicochemical properties of sericin/chitosan blended films were investigated. In sericin pulverization process by freezing-thawing method, the refrigeration storage at $4^{\circ}C$ maximized gelling between sericin molecules, which increased 10% of recovery ratio from sericin concentration solution that using ultrafiltration procedure. In physicochemical properties of sericin/chitosan blended films, the maximum load of chitosan (6.7kgf) had higher than that of sericin (1.2kgf), and the elongation of sericin and chitosan had 96% and 34%, respectively. Also FT-IR analysis of sericin/chitosan blended films showed that both sericin and chitosan films had amide I peak (N-H bond) in $1,521cm^{-1}$ and amide II peak (C=O bond) in $1,630cm^{-1}$. In addition, it could confirm compatibility between both materials as indicated by the decrease in the amide I peak's absorption value as chitosan content increases.

A Rapid Technique for Determination of Total Disappearance of Dietary Nitrogen in the Digestive Tract Using Washed Fecal Sample after Freezing and Thawing

  • Kamel, H.E.M.;El-Waziry, A.;Sekine, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.313-316
    • /
    • 2000
  • Three Holstein steers, fitted with ruminal and duodenal cannulas, were used in a replicated $3{\times}3$ Latin square design to determine the digestibility of dietary nitrogen in total digestive tract by three methods, 1) mobile nylon bag (MNB); 2) total fecal collection (TFC); and 3) washed fecal sample after freezing and thawing through a sieve with a pore size of $45{\mu}m$ (WFS). A basal diet of oaten hay-barley was supplemented with one of the following protein sources; soybean meal, fish meal or blood meal. Steers were fed at a level of 2% of body weight. The experimental diets were contained approximately 1.85% nitrogen. There were no differences (p>0.05) among the diets on DM, NDF and nitrogen disappearances, and the diet results were pooled to assess the methods. Total tract disappearances of dry matter and neutral detergent fiber were 61.6, 71.1 and 78.9 and 25.3, 63.2 and 64.6 for MNB, TFC and WFS methods, respectively. The lower digestibility of DM and NDF in the MNB method could be a result of low ruminal incubation time. The TFC method had the lower (p<0.05) determination of nitrogen disappearance in the total digestive tract than the MNB and WFS methods. On the other hand, nitrogen disappearance in the total digestive tract determined by the WFS technique was comparable to that in MNB technique, as there was no significant difference (p>0.05) between the methods. It is shown that the disappearance of dietary nitrogen in the total digestive tract could be estimated in the intact animals by using washed fecal sample prior to freezing and thawing.

Long-term Durability Characteristics of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 장기재령에서의 내구특성)

  • Jang, Bong-Seok;Choi, Seul-Woo;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.909-916
    • /
    • 2013
  • Concrete containing lightly burnt MgO has long term expansibility. It also could compensate for the thermal shrinkage of mass concrete, because the hydration of MgO proceeds at a slow pace to long-term age. Thus, lightly burnt MgO has been applied to the construction of mass concrete such as dams. Recently, the expansion characteristics of MgO concrete with fly ash that could be applied to mass concrete for the reduction of hydration heat have been studied and however, limited studies on its durability. This study investigates the long-term durability characteristics of fly ash concrete with lightly burnt MgO. The durability tests on carbonation, freezing-thawing, diffusion of chloride, and resistance to sulfate attack were carried out for MgO concrete with curing for 360 days in submerged condition with different temperature of 20 and $50^{\circ}C$. The results reveal that MgO concrete shows a greater resistance of carbonation, diffusion of chloride, and resistance to sulfate attack. On the other hand the resistance of freezing-thawing was little influenced by MgO powder.

Effect of Freezing and Thawing on Adhesion of Cement Concrete with Coarse-sand Coated FRP (규사코팅 FRP와 콘크리트 부착특성에 동결융해가 미치는 영향)

  • Lee, Gyu Phil;Park, Kwang Phil;Hwang, Jae Hong;Kim, Dong Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • As fiber reinforced polymer (FRP) material is appled for a curved structure such as tunnel, FRP material must has a curved shape. Until now, the curved FRP material has been producted by hand-lay-up or filament winding work. It is impossible for mass production of the curved FRP material by these methods. Also, the quality of product by these methods is lower than that by pultrusion method. New pultrusion method and equipment had been developed for production of FRP material with steady curvature. The objective of this study is to evaluate the effect of freezing and thawing on adhesion of cement concrete with coarse-sand coated FRP in repair and reinforcement of cement-concrete structure using curved FRP material.

Evaluation of Ceramics, Alumina and Silicone Carbide Added Concrete Surface Protecting Agent (세라믹스, 알루미나 및 실리콘 카바이드 혼합물이 첨가된 콘크리트 표면보호재의 성능 평가)

  • Kong, Jin-Hee;Kim, Young-Geun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.43-46
    • /
    • 2009
  • The purpose of this study is to enhance durability of concrete structures that uses this surface protecting material by carrying out the performance test of the surface protecting material of concrete, and as s result, we reached out the conclusion as follow. 1. As a result of the test measuring the stability and adhesive power of conductive film against ultraviolet, freezing & thawing, and damage from seawater that deteriorate the surface protecting material, it was turned out to meet the performance criteria specifying in the KS standard enough to gain a good evaluation to use as a surface protecting material. 2. As a result of the test identifying the neutralization-furtherance, it was assessed to be capable of protecting effectively concrete structures from carbonic acid gas by a very low depth of 0.1mm of neutralization. 3. As a result of the test identifying Penetrated Resistance Properties of chloride ion, as it was turned out to have a very low value of 819 Coulombs, it was assessed that even in the environment where the corrosion by chloride such sea environment is very affective, the film can effectively protect the concrete structure. 4. As a result of the test identifying freezing & thawing, as there was no change in reduction of mass after 400 cycle, it was assessed that the film has a good resistance against freezing & thawing. According to the results of study above, it is expected that this technology can extend its durability of concrete structure and be widely used for concrete structure through means (methods) to prevent the neutralization and damage from seawater as original purposes of the surface protecting material.

  • PDF

Experimental Study on Correlation Analysis of Air-void, Air-spacing factor and Long-term Durability for Roller-compacted Concrete pavement (롤러 전압 콘크리트 포장의 공기량 및 기포간격계수와 장기 내구성의 상관관계 분석을 위한 실험적 연구)

  • Lee, Jun Hee;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2016
  • PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS : The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to $300{\mu}m$ (close to $250{\mu}m$) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS : The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.

Strength and Durability Properties of Concretes Using Ground Granulated Blast-Furnace Slag According to Steam Curing Types (고로(高爐)슬래그 미분말(微分末)을 사용한 콘크리트의 증기양생(蒸氣養生)에 따른 강도(强度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jang, Ho-Sung;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.52-59
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of ground granulated blast-furnace slag on strength development and durability of ordinary portland cement concrete (OPC) with steam curing types. Main experimental variables were slag contents(0%, 10%, 30%, 50%, 70%) and curing types (standard, accelerated curing). It were performed to check the basic properties of concretes that compressive strength, rapid chloride ion permeability and chemical resistance. From the result, we have found that increasing the amount of blast-furnace slag produced concrete with increased compressive strength and permeability resistance. Rapid freezing-thawing test showed that they were good enough to protect the concrete structures and to carry out cyclic freezing and thawing. The freeze-thaw resistance of blast-furnace slag produced concretes maintained above 90% of relative dynamic modulus after 300 freezing-thawing cycles. Increasing the amount of blast-furnace slag produced concretes with increased chemical resistance.

The Evaluation of Surface Scaling and Resistance of Concrete to Frost Deterioration with Freezing-Thawing Action by Salt Water (염화물이 함유된 동결수의 동결융해 작용에 따른 콘크리트의 내동해성과 표면열화 평가)

  • Kim, Gyu-Yong;Kim, Moo-Han;Cho, Bong-Suk;Lee, Seung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.143-151
    • /
    • 2007
  • This study presents the experimental results of frost durability including resistance to freezing-thawing and surface scaling of concrete. Mixing design was proportioned with the various water-binder ratio between 0.37 and 0.47 and three different binder compositions corresponding to Type I cement without any supplementary cementitious materials(OPC), Type II cement with 50% blast-furnace slag replacement(BFS50), and ternary cement with Type III cement, 15% fly ash, and 35% slag replacement (BFS35%+FA15%). Test results showed that the mixing design with BFS50% and BFS35%+FA15% exhibited higher durability factor than that made with OPC only. Finally, the use of blend cement containing slag can be used effectively in terms of frost durability of the concrete exposed to severe condition under coastal environment like as flying salt, sea water spray, etc.