• Title/Summary/Keyword: freezing, thawing

Search Result 935, Processing Time 0.027 seconds

Durability Evaluation of Concrete Using Fine Sand of Nakdong-River

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.265-271
    • /
    • 2014
  • It is strongly needed to investigate the fine sand as an alternative fine aggregate of well-graded river sand because the fine sand which is being enormously distributed in the midstream and downstream of Nakdong-River in Korea has a poor grading but good quality as a fine aggregate for concrete. Thus, the purpose of this experimental research is to evaluate the durability of concrete using the fine sand to utilize it actively as a fine aggregate. For this purpose, the concrete specimens using different fine sand were made for the specified concrete strength of 35MPa, and then their durability such as the resistance to freezing and thawing and carbonation, and drying shrinkage were evaluated. It was observed from the test results that the resistance to freezing and thawing and carbonation of concrete using the fine sand was similar to that of concrete using reference sand, but the drying shrinkage of concrete using the fine sand with small fineness was comparatively lager than that of concrete using reference sand.

Cryopreservation of Mouse Late Morulae by Vitrification (생쥐 후기상실배의 Vitrification에 관한 연구)

  • 강민수
    • Journal of Embryo Transfer
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 1993
  • This study was carried out to investigate the survival rates of late mouse molulae frozen in the state of vitrification and then thawed after equilibrating them separately in EFS 40, GFS 40 and DFS 40 at 1$0^{\circ}C$. The results obtained are as follows : 1. Freezing in the state of vitrification and thawing late mouse molulae after equilibrating them at l0$0^{\circ}C$ in EFS 40 for 30 seconds, one minute and two minutes, we obtained survival rates of 76.7%, 96.7% and 100%, respectively. 2. Freezing and thawing them after equilibrating at 1$0^{\circ}C$ in GFS 40 for 30 seconds, one minute and two minutes, we obtained survival rates of 60%, 96.7% and 10%, respectively. These results are as similar as in the case of EFS 40. 3. Freezing and thawing them after equilibrating at l$0^{\circ}C$ in DFS 40 for 30 seconds and one minute, we obtained survival rates of 62.1% and 0%, respectively. These results represent lower survival rates than those obtained with EFS 40 and GFS 40. In conclusion, even equilibrating late mouse molulae in EFS 40 and GFS 40 at 1$0^{\circ}C$ for more than one minute gives a survival rate of more than 97%, while equilibrating them in DFS 40 at 1$0^{\circ}C$ for more than one minute results in a 0% survival rate, which means that DFS 40 has a strong toxicity.

  • PDF

A Experimental Study on Application of KS F 2456 using Shear Wave (급속 동결 융해에 대한 콘크리트의 저항 시험방법(KS F 2456)에 전단파 적용을 위한 실험적 연구)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.57-65
    • /
    • 2012
  • PURPOSES: It is important to consider the long-term performance of concrete pavement, because concrete pavement is more exposed to the various environmental conditions than any other concrete structures. One of the several methods to evaluate the long-term performance of concrete during winter is KS F 2456. Relative dynamic modulus of elasticity shows the resistance to freezing and thawing. METHODS: To measure relative dynamic modulus of elasticity, ultra sonic is generally used. But in this study, to measure the relative dynamic modulus of elasticity, both ultra sonic and shear wave were used and then compared each other. RESULTS: The results from the measurement by ultrasonic wave and shear wave were divided into three types. Type 1 : Specimens are good and relative dynamic modulus of elasticity did not decrease until 300 cycle. Type 2 : The relative dynamic modulus of elasticity decreased from the late cycle.(about 150 cycle later) Type 3 : The relative dynamic modulus of elasticity consistently decreased from the beginning. As a result of ANOVA, there is no difference according to measuring method, in type 2 and 3. But there is a difference according to measuring method, in type 1's relative dynamic modulus of elasticity. CONCLUSIONS: It is proved that shear wave can be used to understand the damage tendency of relative freezing and thawing and to measure the relative dynamic modulus of elasticity.

Performance Evaluation of Porous Hwang-toh Concrete Using Blast Furnace Slag Cement (고로슬래그시멘트를 사용한 다공성 황토콘크리트의 성능 평가)

  • Kim, Hwang-Hee;Kang, Su-Man;Park, Jong-Sik;Park, Sang-Woo;Jeon, Ji-Hong;Lee, Jin-Hyung;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • This study aims to evaluate a porous concrete using hwang-toh, blast furnace slag and blast furnace slag (BFS) cement instead of type I cement. The tests that were carried out to analysis the properties of porous hwang-toh BFS cement concrete included compressive strength, continuous void ratio, absorption rate, and pH value, repeated freezing and thawing test were conducted. Test results indicated that the performance in porous hwang-toh concrete are effective on the kaoline based binder materials. The pH value were shown in about 9.5 ~ 8.5. The compressive strength was increased and void ratio was decreased with increasing the kaoline based binder materials, respectively. The void ratio and compressive strength were in the range of about 21 ~ 30 %, 8 ~ 13 MPa, respectively. The increased in void ratio of more than 25 % is showed to reduce the resistance of repeated freezing and thawing. Also, the resistance of repeated freezing of thawing and the compressive strength of porous hwang-toh BFS cement concrete are independent with hwang-toh content and BFS cement amount. But, the void ratio was decreased with increasing the high volume hwang-toh contents (more than 15 %).

A Study on the Engineering Characteristics of PVA (Polyvinyl Alcohol) Fiber-Cement-Soil Mixtures (PVA 시멘트 혼합토의 공학적 특성 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Ki-Sung;Yoo, Kyeong-Wan;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • This study aimed to investigate the engineering characteristics of PVA fiber-cement-soil mixture used to prevent or reduce brittle failure of cement-soil mixtures due to the tensile strength increase from the addition of a synthetic fiber. The engineering characteristics of PVA fiber-cement-soil mixtures composed of PVA fiber, soil, and a small amount of cement was analysed on the basis of the compaction test, the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The specimens were manufactured with soil, cement and PVA fiber. The cement contents was 2, 4, 6, 8, and 10%, and the fiber contents was 0.4, 0.6, 0.8, and 1.0% by the weight of total dry soil. To investigate the strength characteristics depending on age, each specimen was manufactured after curing at constant temperature and humidity room for 3, 7 and 28 days, after which the engineering characteristics of PVA fiber-cement-soil mixtures were investigated using the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The basic data were presented for the application of PVA fiber-cement-soil mixtures as construction materials.

Compressive Strength Properties and Freezing and Thawing Resistance of CSG Materials (CSG 재료의 압축강도 특성 및 동결융해 저항성)

  • Yeon, Kyu-Seok;Kim, Young-Ik;Hyun, Sang-Hoon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which that can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the unconfined compressive strength properties and freezing and thawing resistance of CSG materials with unit cement content. The three types of CSG-80, CSG-100 and CSG-120 with cement content were designed to evaluate the optimum water content, dry density, strength, stress-strain, micro structure and durability factor. As the results, the optimum water content ratio with cement content showed almost similar tendency, and the unconfined compressive strength and dry density increased as cement content increases. The strength ratio of 7 days for 28 days were in the range of 55~61 % and the strain ratio in stress-strain curve were in the range of 0.8~1.6 % nearby maximum strength in 28 days. It is expected that this study will contribute to increasing application of CSG method as well as to increasing the utilizing of CSG materials as a environmentally friendly CSG method.

Evaluation of mechanical characteristics of marine clay by thawing after artificial ground freezing method (인공동결공법 적용 후 융해에 따른 해성 점토지반의 역학적 특성 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Son, Young-Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.31-48
    • /
    • 2019
  • The artificial ground freezing (AGF) method is a groundwater cutoff and/or ground reinforcement method suitable for constructing underground structures in soft ground and urban areas. The AGF method conducts a freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as excavation supports and/or cutoff walls. However, thermal expansion of the pore water during freezing may cause excessive deformation of the ground. On the other hand, as the frozen soil is thawed after completion of the construction, mechanical characteristics of the thawed soil are changed due to the plastic deformation of the ground and the rearrangement of soil fabric. This paper performed a field experiment to evaluate the freezing rate of marine clay in the application of the AGF method. The field experiment was carried out by circulating liquid nitrogen, which is a cryogenic refrigerant, through one freezing pipe installed at a depth of 3.2 m in the ground. Also, a piezo-cone penetration test (CPTu) and a lateral load test (LLT) were performed on the marine clay before and after application of the AGF method to evaluate a change in strength and stiffness of it, which was induced by freezing-thawing. The experimental results indicate that about 11.9 tons of liquid nitrogen were consumed for 3.5 days to form a cylindrical frozen body with a volume of about $2.12m^3$. In addition, the strength and stiffness of the ground were reduced by 48.5% and 22.7%, respectively, after a freezing-thawing cycle.

Studies on Transfer of In vitro Fertilized Mouse Embryos Following Ultrarapid Freezing III. A Study on Transfer In Vitro Fertilization Mouse Embryos Following Ultrarapid Freezing-Thawing (생쥐 체외수정난의 초급속동결 및 이식에 관한 연구 III. 생쥐 체외수정난의 초급속동결-융해란의 이식에 관하여)

  • 장규태;민관식;오석두;강대진;윤창현
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.3
    • /
    • pp.217-224
    • /
    • 1992
  • These studies were carried out ot investigate on the transferred embryo development following ultrarapid frozen for 8-cell and morula of in vitro fertilization mouse embryos. The post-thaw embryo survival was evaluated and compared by cell stage of embryos and by equilibration time before ultrarapid freezing. The results obatined were summerized as follows: 1. The effects of equilibration time of 3 vs. 6 minutes before ultrarapid freezing and after thawing on the morphological survival and the viability of 8-cell and morulas embryos were not significant. 2. When the ultrarapid frozen-thawed 32 eight-cell and 33 morula embryos, and 30 fresh blastocysts were transferred to pseudopregnant recipient mice, the number of normal offsprings produced were 9(28.1%), 14(42.4%) and 18(60.0%), respectively. From the above resutls, it was concluded that the optimal conditions of pH osmolality of the media for mouse IVF and embryo culture, and the period of sperm preincubation might be 7.1, 310 mOsm and 120 min., respectively,a nd somewhat high conception rate might be resulted from transfer of frozen embryos of morula stage and fresh embryos of blastocyst stage.

  • PDF

Cyopreservation and its clinical applications

  • Jang, Tae Hoon;Park, Sung Choel;Yang, Ji Hyun;Kim, Jung Yoon;Seok, Jae Hong;Park, Ui Seo;Choi, Chang Won;Lee, Sung Ryul;Han, Jin
    • Integrative Medicine Research
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Cryopreservation is a process that preserves organelles, cells, tissues, or any other biological constructs by cooling the samples to very low temperatures. The responses of living cells to ice formation are of theoretical interest and practical relevance. Stem cells and other viable tissues, which have great potential for use in basic research as well as for many medical applications, cannot be stored with simple cooling or freezing for a long time because ice crystal formation, osmotic shock, and membrane damage during freezing and thawing will cause cell death. The successful cryopreservation of cells and tissues has been gradually increasing in recent years, with the use of cryoprotective agents and temperature control equipment. Continuous understanding of the physical and chemical properties that occur in the freezing and thawing cycle will be necessary for the successful cryopreservation of cells or tissues and their clinical applications. In this review, we briefly address representative cryopreservation processes, such as slow freezing and vitrification, and the available cryoprotective agents. In addition, some adverse effects of cryopreservation are mentioned.

Studies on the soil freezing depth and change of moisture contents in evergreen plants upon subzero temperature in (강원도지역의 토양동결심 및 상록식물의 함수량 추이에 관한연구 (1))

  • 홍종운;허범양;원경열;임병춘;이기철;하상건
    • Asian Journal of Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.42-48
    • /
    • 1990
  • Experiments were conducted to investigate the soil freezing depth and pattern with freezing measuring instruments during 1988-l989 winter season in Kangwon province. Freezing measuring instrument was made with acrylic pipes which were consisted of inner and outer parts. Inner pipe was filled with 0.01 % methylene blue solution and rubber hose to protect pipe breakdown by solution freezing. Freezing measurements were carried out by observing discoloration of methylene blue solution. Moisture content of evergreen trees and ground cover plants was also examined in the winter season. The observed results are as follows: 1.In the land of I OOM above sea level, soil freezing depth became deeper as the sum of Accumulated degree-days of temperature below 0˚C(0˚C . day) increased: Soil freezing depth was 30-40cm at l00˚C, 42-43cm at 150˚C, and 47cm at 200˚C day 2.Soil freezing with vinyl mulching was less developed by l3cm at l00˚C with sum of subzero temperature, by l7cm at 200˚C than that of the bare ground. Soil of rich hulls mulching with 4Ocm was not frozen until soil freezing at the bare ground was developed to 25cm depth. 3.Cashmeron mulching was more effective than felt mulching in the heat insulation of soil. 4.Thawing of soil was done from the lowest part of the frozen in the ground to upward in the beginning and after that it was done from the surface of frozen soil to downward. Finally thawing was completed at the middle of frozen soil.

  • PDF