• Title/Summary/Keyword: freeze-thawing temperature

Search Result 43, Processing Time 0.028 seconds

Flexural Behavior of Reinforced Concrete Beams Exposed to Freeze-Thawing Environments (동결융해 환경에 노출된 철근콘크리트 보의 휨 거동특성)

  • Jang, Gwang-Soo;Yun, Hyun-Do;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.126-134
    • /
    • 2009
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freeze-thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the flexural behavior of RC beams exposed to freeze-thawing environments. To compare the difference in flexural behavior of RC Beams, limited tests were conducted under different types of Longitudinal steel ratio and freeze-thawing cycles. For this purpose, fourteen small-scale RC beams ($100mm{\times} 100mm {\times}600mm$) were strengthened in monotonic and cyclic loadings, subjected to up to 150, 300 cycles freeze-thawing from $-18{\sim}4^{\circ}C$. It is thought that experimental results will be used as basic data to evaluate flexural behavior of RC beams exposed to freeze-thawing.

Evaluation of durability performance for maintenance of tunnel structures due to repeated freezing and thawing

  • Jai-Wook An;Joon-Shik Moon;Hong-Kyoon Kim
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.593-601
    • /
    • 2024
  • In this paper, the quantitative evaluation method is presented for the durability performance of mountain tunnel concrete linings experiencing freezing and thawing during winter season. To analyze the freeze-thaw characteristics of lining, the freezing time of the concrete lining was measured by the outside temperature. The heat flow analysis was conducted based on the freezing time measured through the indoor experiment, and based on this, the energy required to freeze the concrete lining by the temperature of the outside air could be analyzed. In addition, the temperature change during the winter season was measured through an instrument installed on the actual tunnel concrete lining, and based on the results of indoor and field experiments, criteria for freeze-thaw environment evaluation and progress evaluation were prepared. Also, an equation using the freezing index was proposed through regression analysis.

A Study on the Changes of Pork Quality by Freezing and Thawing Methods (돈육의 냉해동 조건에 따른 품질 변화에 관한 연구)

  • Kang, Byung-Sun;Kim, Dong-Ho;Lee, Oh-Seuk
    • Culinary science and hospitality research
    • /
    • v.14 no.2
    • /
    • pp.286-292
    • /
    • 2008
  • The purpose of this study was to examine the effects of freezing and thawing methods on the quality of pork meat. The freezing methods for pork meat were the cryogenic freezing with liquid nitrogen gas, fast freezing at $-70^{\circ}C$ and normal freezing at $-20^{\circ}C$. The thawing methods were tested on low temperature thawing at refrigerative temperature($4^{\circ}C$), room temperature($20^{\circ}C$), high temperature($60^{\circ}C$) and using microwave. The quality of pork meat frozen by cryogenic methods was better than those of fast and normal freezing methods. The cooking hardness of pork meat frozen by cryogenic method showed the highest value as 1,898 g. In case of fast freezing, the hardness of pork meat was 1,472 g and that of normal frozen pork meat was 1,541 g. The high cooking hardness value of cryogenic frozen pork meat showed that the cryogenic freezing method made less freeze damage like textural softness. The drip-loss of pork meat thawed at refrigerative temperature($4^{\circ}C$), room temperature($20^{\circ}C$), high temperature($60^{\circ}C$) were shown lower than that of microwave thawing. The cooking hardness of pork meat that was thawed by microwave showed the lowest value among the thawing methods. The cryogenic freezing was the most useful freezing method for preserving quality, decreasing the freeze damage of pork meat. And thawing at refrigerative temperature was the most effective method to prevent quality loss and weight loss by drip-loss.

  • PDF

Effects of Various Thawing Conditions on Quality Characteristics of Frozen Garlic (해동조건에 따른 냉동마늘의 품질 특성)

  • Park, Jong Woo;Kim, Jinse;Park, Seok Ho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Kim, Hayun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.5
    • /
    • pp.893-901
    • /
    • 2015
  • This study investigated the effects of thawing conditions on physiological activities and quality of peeled garlic. Peeled frozen garlic was analyzed after thawing at low temperature ($4^{\circ}C$), room temperature ($20^{\circ}C$), tap water ($20^{\circ}C$), radio frequency of 27.12 MHz, and 2.45 GHz in a microwave. As a result, the time required to thaw garlic to $0^{\circ}C$ by various thawing methods was shortest at2.45 GHz in a microwave, followed by $20^{\circ}C$ tap water, radio frequency of 27.12 MHz, $20^{\circ}C$, and $4^{\circ}C$. Microwave thawing was faster than other methods, but it resulted in significant non-uniformity of heating. The hardness of peeled garlic significantly decreased upon freeze-thawing, whereas it showed improved hardness upon radio-frequency thawing. Total color difference in garlic increased upon freeze-thawing, and it was not improved by various thawing methods. Antioxidant activities were determined for DPPH radical scavenging ability, SOD-like activity, and reducing power. Total phenolic compounds and flavonoids in garlic extract were measured as $3.222{\pm}0.214{\mu}g$ GAE/g and $0.149{\pm}0.03{\mu}g$ QE/g, respectively. The content of total phenolic compounds was significantly reduced by 2.45 GHz microwave thawing ($1.90{\pm}0.02{\mu}g$ GAE/g); however, flavonoid contents were slightly reduced under freezing and thawing conditions. The DPPH radical scavenging ability of garlic extracts was not affected by thawing methods; however, SOD-like activity and reducing power were slightly reduced by freeze-thawing. These results indicate that physiological activities were not improved by radio-frequency thawing; however, thawing time and maintain hardness were reduced compared with conventional thawing methods.

Reduction of Shear Strength of Railway Roadbed Materials with Freezing-thawing Cycle (동결융해 반복에 따른 철도노반재료의 전단강도 변화)

  • Choi, Chan yong;Shin, Eun chul;Kang, Hyoun Hoi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.13-21
    • /
    • 2011
  • In seasonal frozen areas with climatic features, which have a temperature difference in the winter and thawing season, changes of mechanical properties of the soil in the zone could be seen between the freezing and thawing surface. In particular, in soil with many fine particles, a softening of the roadbed usually occurs from frost and thawing actions. The lower bearing capacity is a rapidly progressive the softening of roadbed, and occurred a mud-pumping by repeated loading. In this study, the three kind of sandy soil with contents of fine particles were conducted by directly shear box test with the number of cyclic in freeze-thawing and the water content of soil. Subsequently, the relationship between the shear strength and freeze-thaw cycling time was obtained. The shear strength was decreased with the increase of the freeze-thaw cycling time. A shear stress deterioration of the soil with power function modal is proposal.

The Characteristics of Rock Weathering due to Freeze-Thawing - Focused on Rhyolite, Basalt, Tuff - (동결-융해작용에 따른 암석풍화의 특성 - 유문암, 현무암, 응회암을 중심으로 -)

  • Yang, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.47-65
    • /
    • 2018
  • Frost shattering has traditionally been considered as one of the most effective process in rock weathering. Each slab specimens of five or six rhyolite, basalt and tuff was prepared and put in freeze-thaw cycles and repeated 300 times in the temperature of $-25^{\circ}C$ to $+30^{\circ}C$ and their weathering patterns and products were analyzed by surface observation, particle size, XRD and thin section. As the result, some changes were observed in weathering patterns and weathering products. Rock shattering was more active in waterlogging rather than atmospheric conditions, but there are many differences depending on the type of rock. Rhyolite is hardly weathered by 300 times freeze-thaw cycles and generates the least amount of weathering products. Weathering of Basalt is limited to the surface layer where water can be absorbed, and produces a few amount of platy-shape debris. Tuff are separated by blocky structure which the particles are aggregated along their edges rather than enlarged existing cracks/joins or generated new joints.

Study on the Prediction of Concrete Deterioration Subjected to Cyclic Freezing and Thawing (동결융해작용을 받는 콘크리트의 열화예측에 관한 연구)

  • 고경택;이종석;이장화;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.795-798
    • /
    • 1999
  • Deterioration induced by the freezing and thawing in concrete often leads to the reduction in concrete durability by the cracking or surface spalling. In this paper, the deterioration prediction model for concrete structures subjected to the irregular freeze-thaw was proposed from the results of accelerated laboratory test using the constant temperature condition and acceleration factor from the in-situ weather data.

  • PDF

A Study on the fatigue deformation behavior of granitic stone in Korea (국내화강석재의 피로변형거동에 관한 연구)

  • 김재동;정윤영;장보안
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.144-156
    • /
    • 1996
  • The deformation behaviors under uniaxial compressive cyclic loading were investigated for fresh rocks and freeze-thaw cycled samples. The Pocheon granite which is one of the most popular building stone in Korea was selected for tests. 0.5 Hz and 50% of dynamic strength were used as test conditions for frequency and fatigue span, respectively. For freezethaw procedure, sample were frozen for 3 hours under the temperature of -2$0^{\circ}C$ and then followed 3 hours thawing under the temperature of +2$0^{\circ}C$. Twenty seven samples were used as untreated and seventy three for freeze-thaw samples. No failure occurred up to 15000 cycles at the stress level of 60% of dynamic strength, indicating that the lowest strees level for fatigue failure may be around 60% of dynamic strength. Permanent strain and damping capacity curves show that there were three stages when rock behaves like under creep. Young's moduli were increased and Possion's ratios were decreased with the increase of the number of cycles. Possion's ratios varied more rapidly than Young's moduli did with the increase of the number of cycles. This may represent that most microcracks developed by fatigue stress are parallel to the axis of loading. The deformation behavior of freeze-thaw cycled samples were almost the same as that of untreated samples. However, the result of freeze-thaw cycled samples showed lower regression constant, indicating that the physical durability of rock is much lowered because of cyclic temperature variation.

  • PDF

Strengthening Performance and Failure Characteristics of Reinforced Concrete Beams Exposed to Freezing-and-thawing Cycles after Shear Strengthening with CFRP Plate (CFRP 판으로 전단 보강된 이후 동결융해에 노출된 철근콘크리트 보의 보강성능 및 파괴특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Jeon, Esther;Lee, Min-Jung
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.457-460
    • /
    • 2008
  • CFRP plates has been established as an effective method for rehabilitation and strengthening of concrete structures. The CFRP reinforcements are bonded to beams and slabs using structural adhesives. Adhesive strength can be affected by environmental exposure. During freezing-and-thawing cycling, temperature-induced stresses in the adhesive layer, due to differential thermal expansion between the CFRP and the substrate concrete, may lead to bond damage and contribute to or cause premature CFRP composite separation. This paper presents the results of experimental program undertaken to investigate the effects of freeze-thaw cycling (from -18 to $4^{\circ}C$) on the behavior and failure characteristics of RC beams strengthened in shear with CFRP plate using acoustic emission (AE) technique.

  • PDF

Optimization of Preparation Variables for Trimyristin Solid Lipid Nanoparticles

  • Choi, Mi-Hee;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • Solid lipid nanoparticles (SLNs) have been regarded to behave similar to the vegetable oil emulsions because emulsions of lipid melts are formed before lipid droplets being solidified to turn into SLNs. Compared to lipid emulsion, however, it has been more difficult to obtain stable SLNs and needs more extensive considerations on stabilizer and manufacturing process. In the present study, we tried to prepare phosphatidylcholine-based trymyristin (TM) SLNs using high pressure homogenization method and optimize the manufacturing variables such as homogenization pressure, number of homogenization cycles, cooling temperature, co-stabilizer and freeze-drying with cryoprotectants. Nano-sized TM particles could be Prepared using egg Phosphatidylcholine and pegylated phospholipids ($PEG_{2000}$PE) as stabilizers. Based on the optimization study, the dispersion was manufactured by homogenization under the pressure of 100 MPa for more than 5 cycles, and solidifying the intermediately formed lipid melt droplets by dipping in liquid nitrogen followed by thawing at room temperature. In addition, TM SLNs could be freeze-dried and then redispersed easily without significant particle size changes after freeze drying with 10% and 12.5% sucrose or trehalose. The TM SLNs established in this study can be used as delivery system for drugs and cosmetics.