• Title/Summary/Keyword: freeway ramp

Search Result 63, Processing Time 0.021 seconds

Analysis of Lane-Changing Distribution within Merging and Weaving Sections of Freeways (고속도로 합류 및 엇갈림구간에서의 차로변경 분포 분석에 관한 연구)

  • Kim, Yeong-Chun;Kim, Sang-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.115-126
    • /
    • 2009
  • The lane-change behavior usually consists of discretionary lane-change and mandatory lane-change types. For the first type, drivers change lanes selectively to maintain their own driving condition and the second type is the case that the drivers must change the current lane, which can occur in recurrent congestion sections like merging and weaving sections. The mandatory lane-change behavior have a great effect on the operation condition of freeway. In this paper, we first generate data such as traffic volumes, speeds, densities, and the number of lane-change within the merging and weaving sections using the data of individual vehicle collected from time-lapse aerial photography. And then, the data is divided into the stable and congested flow by analyzing the speed variation pattern of individual vehicles. In addition, the number of lane-changing from ramp to mainline within every 30-meter interval is investigated before and after traffic congestion at study sites and the distribution of lane-changing at each 30-meter point is analyzed to identify the variation of lane-changing ratio depending on the stable and congested flows. To recognize the effect of mainline flow influenced by ramp flow, this study also analyzes the characteristics of the lane-changing distributions within the lanes of mainline. The purpose of this paper is to present the basic theory to be used in developing a lane-changing model at the merging and weaving sections on freeways.

Dynamic O-D Trip estimation Using Real-time Traffic Data in congestion (혼잡 교통류 특성을 반영한 동적 O-D 통행량 예측 모형 개발)

  • Kim Yong-Hoon;Lee Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.1-12
    • /
    • 2006
  • In order to estimate a dynamic origin and destination demand between on and off-ramps in the freeways, a traffic flow theory can be used to calculate a link distribution proportion of traffics moving between them. We have developed a dynamic traffic estimation model based on the three-phase traffic theory (Kerner, 2004), which explains the complexity of traffic phenomena based on phase transitions among free-flow, synchronized flow and moving jam phases, and on their complex nonlinear spatiotemporal features. The developed model explains and estimates traffic congestion in terms of speed breakdown, phase transition and queue propagation. We have estimated the link, on and off-ramp volumes at every time interval by using traffic data collected from vehicle detection systems in Korea freeway sections. The analyzed results show that the developed model describes traffic flows adequately.

  • PDF

Analysis on Propagation of Highway Traffic Flow Turbulence at Entrance-Ramp Junctions (교통류 난류현상을 이용한 고속도로 합류부의 영향권 분석)

  • Lee, Ki Yoon;Roh, Chang Gyun;Son, BongSoo;Chung, Jin-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.167-173
    • /
    • 2009
  • In general, an influenced area of merging section is defined as 500 m including 100 m upstream and 400 m downstream. However, from an observation of the actual traffic flow, it is found that merging effect influences more on downstream than upstream. In this study, an influenced area of merging section on freeway is analyzed by using turbulence which is defined as conflicts between vehicles. In order to overcome the limits of existing traffic flow detection system established with intervals of about 500 m, this study uses raw data collected from the detectors which are established in entrance ramps with similar road conditions. To divide data of each point into similar road conditions, the data of total 72 hours is sorted by Level of Service. An influenced area analyzed by standard deviation of speed is 700 m section of highway, including 300 m upstream and 400 m downstream, for both right and left ramps. It is the result including upstream 200 m more than previous studies.