• Title/Summary/Keyword: free-vibration

Search Result 2,141, Processing Time 0.026 seconds

Development of Real-Time Flutter Analysis Program (실시간 플러터 해석 프로그램 개발)

  • Lee, Ju-Yeon;Bae, Jae-Sung;Hwang, Jai-Hyuk;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Wind tunnel test which is one of the method to predict the aeroelastic characteristics has difficulties to make scale-down structural model and achieve a specified free stream velocity. It is very costly and complicated to consider similarity relationships between real structure and scale-down structural model. "Dry Wind-Tunnel(DWT)" was proposed to overcome these difficulties. This is made up of Ground Vibration Test hardware and software to compute the aerodynamic forces. In the present study, program for computing the real-time unsteady aerodynamic forces which is an important part of DWT system was developed by Matlab Simulink and dSPACE. In addition, using this program and software which is a part of the test structure, a real-time flutter analysis was conducted and the results are verified by ZAERO.

Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Beams Subjected to Eccentrically Axial Forces (편심축하중을 받는 비대칭 박벽보의 엄밀한 동적강도행렬)

  • Kim, Moon Young;Yun, Hee Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.703-713
    • /
    • 2001
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled straight beams subjected to eccentrically axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of nonsymmetric thin-walled straight beams are evaluated and compared with analytical solutions or results by thin-walled beam element using the cubic Hermitian polynomials and ABAQU's shell elements in order to demonstrate the validity of this study.

  • PDF

Extracting Modal Parameters of Railway Bridge under the Action of High-speed Train Using TDD Technique (TDD기법을 이용한 고속철도 교량의 동특성 추출)

  • Kim, Byeong Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.761-771
    • /
    • 2008
  • When the crossing frequency of a train meets the natural frequency of a railway bridge, the bridge is bound to become resonant. There are few available time response samples involving a train that passes a bridge at high speed. Very effective modal-parameter extraction techniques for such special high-speed railway bridge conditions are introduced in this paper. Utilizing the cross-correlations of the free-vibration responses after the train passes, mode shapes and the temporal modal parameters (e.g., natural frequency and damping ratio) are extracted using the TDD and SI techniques, respectively. This approach has been applied to a two-span steel composite bridge in the Kyung-Bu high-speed railway system. The estimation results were compared with those obtained using the existing methods. The results fully coincide with those that were extracted using the existing aforementioned technique.

Influence of complex environment test on lead-free solder joint reliability (온도변화에 따른 진동의 무연솔더 접합부 신뢰성에 미치는 영향)

  • Sa, Yoon-Ki;Yoo, Se-Hoon;Kim, Yeong-K.;Lee, Chang-Woo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.77-77
    • /
    • 2009
  • ELV(; End of Life Vehicles)를 비롯한 최근 환경 동향은 자동차 전장 모듈에 대하여 다양한 무연 솔더 적용을 요구하고 있다. 특히 자동차 엔진룸과 트랜스미션은 가동 중 고온 및 진동의 지속적인 영향을 받기 때문에 이와 유사한 환경에서의 신뢰성 연구가 필요한 시점이다. 이에 본 연구에서는 Sn3.5Ag, Sn0.7Cu, Sn5.0Sb 솔더 조성에 대하여 복합환경 조건하에서 접합부 신뢰성을 평가하였다. 복합환경을 구현하기 위하여 $-40{\sim}150^{\circ}C$ 범위의 온도 사이클과 랜덤 진동을 동시에 인가하였으며, 진동 가속도 3G, 진동주파수는 10~1000Hz 로 설정하여 자동차 환경을 충족하였다. 복합시험의 1 cycle 은 20 시간이며, 총 120 시간의 시험 동안 진동의 영향 및 진동과 고온이 동시에 작용하였을 경우의 영향에 대해 비교하였다. 테스트 모듈 제작을 위해 450 um 의 솔더볼이 적용되었으며, 각 조성의 솔더볼을 이용하여 BGA test chip 제작하였고, 제작된 BGA test chip 은 다시 daisy chain PCB 위에 실장 및 리플로우 공정을 통해 접합되었다. 테스트 동안 In-situ 로 저항의 변화를 관찰하여 파단의 유무를 판단하였고 전자주사현미경을 통해 파괴 기전을 평가하였다. 복합시험 시간에 따른 전단강도를 측정하였으며, 각 조성에 대하여 상이한 전단강도 변화를 관찰하였다. 계면 IMC 형상은 전단강도 변화에 영향을 주었으며, 특히 높은 온도가 IMC 성장을 촉진시켜 전단강도 감소에 영향을 주었다. 본 복합환경 시험 조건에서는 Sn0.7Cu 가 가장 안정적이었으며, 파단면을 관찰한 결과 연성파괴 모드가 관찰되었다.

  • PDF

Nondestructive Bending Strength Evaluation of Miscanthus sinensis var. purpurascens Ceramics Made from Different Carbonizing Temperatures (탄화온도별로 제조된 거대억새 세라믹의 비파괴 휨강도 평가)

  • Won, Kyung-Rok;Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.723-731
    • /
    • 2014
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for ceramics made by different carbonizing temperatures (600, 800, 1000, $1200^{\circ}C$) after impregnating the phenol resin with Miscanthus sinensis var. purpurascen particle boards. Dynamic modulus of elasticity increased with increasing carbonizing temperature. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient was higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made by different carbonizing temperature for Miscanthus sinensis var. purpurascens particle boards.

Comparison of Fragility Using Natural Frequency and Damping Parameter in System (고유주파수와 감쇠비에 대한 시스템 손상도 비교)

  • Lee, Seok-Min;Jung, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2018
  • The purpose of the present study is to compare the reduction rate of natural frequency and the increase rate of damping parameter with structural damage in system. For this purpose, experiment and numerical simulation analysis are performed for the 2-span H-Beam with lower natural frequency and higher damping parameter from free vibration in structure. The response signal by impact load before and after damage is analyzed at 14 locations. The response signals for all locations are performed fast fourier transform to estimate the natural frequency reduction rate and wavelet transform to estimate the damping parameter increase rate. The time domain function corresponding to each scale(frequency) is separated from the response signal by wavelet parameter. The estimation of damping parameter increase rate using wavelet transform is more sensitive than the estimation of natural frequency reduction rate in structure.

The Influence of Spandrel Wall and Fill on the Dynamic Characteristics of Historic Stone Masonry Arch Bridges (무사석과 적심석이 홍예교량의 동적특성에 미치는 영향)

  • Lee, Soo-Gon;Lee, Sung-Min;Song, Chang-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.161-168
    • /
    • 2005
  • The influence of spandrel wall and fill above the extrados on the structural behavior and load capacity of stone masonry arch bridges has not been thoroughly studied yet. One can estimate the structural characteristics and behavior of stone masonry structures by measuring the dynamic characteristics. To investigate the influence of spandrel wall and fill on the dynamic characteristics of historic stone masonry arch bridges, on-site free vibration tests were performed for 5 stone bare arches with no spandrel wall and backfill. And the natural frequencies of those arches were compared with the natural frequencies of 18 stone arch bridges with spandrel walls. Experimental results show from the experiments show that the presence of spandrel wall and fill may increase the natural frequency of arch bridge because the stiffness increase exceeds the mass increase due to spandrel wall.

Magnetic and Infrared Spectral Studies of Oxovanadium (IV)-Carboxylate Complexes (옥소바나듐 (IV)-카르복실레이트 착물의 자기적 및 적외적 분광학적 성질)

  • Yoon-Bo Shim;Sung-Nak Choi;Jong-Yul Park
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.76-83
    • /
    • 1986
  • Four oxovandium(IV) complexes with carboxylate ligands, $VO(picn)_2$, $VO(htmq)_2$, $VO(quin)_2$ and $VO(pyra)_2{\cdot}2H_2O)$ have been prepared and studied. Infrared spectral data coupled with the results of magnetic susceptibility study strongly suggest that there are relatively strong intermolecular interactions in $VO(picn)_2$ and $VO(htmq)_2$. In all oxovanadium(IV) complexes studied in this work, the carboxylate ligand coordinates to the metal ion in the unidentated fashion. Some fundamental vibration modes of oxovanadium(IV) complexes were empirically assigned from the difference in the spectrum of metal complex with free ligand.

  • PDF

Dynamic Analysis of Offshore Structures Considering External Fluid-Structure Interaction (외부유체-구조물의 상호작용을 고려한 해양구조물의 동적해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.271-281
    • /
    • 2005
  • The effects of radiation damping is used to compensate the truncated boundary which is relatively close to the structure-fluid interface in the fluid element surrounding the submerged structures. An efficient ring element is presented to model the shell and fluid element which fully utilizes the characteristics of the axisymmetry. The computational model uses the technique which separate the meridional shape and circumferential wave mode and gets similar result with the exact solution in the eigenvalues and the earthquake analysis. The fluid-structure interaction techniques is developed in the finite element analysis of two dimensional problems using the relations between pressure, nodal unknown acceleration and added mass assuming the fluid to be invicid, incompressible and irrotational. The effectiveness and efficiency of the technique is demonstrated by analyzing the free vibration and seismic analysis using the added mass matrix considering the structural deformation effect.

Dynamic Behavior of Curved Bridges under Seismic Loading (지진하중을 받는 곡선교량의 동적거동)

  • Park, Nam-Hoi;Yoon, Ki-Yong;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.11-21
    • /
    • 2005
  • This study is performed to understand complex behavior and to investigate the rational analysis methods for seismic design of the curved bridges. To analyze the curved bridges for the seismic loadings, it is used that the finite element analysis program has the 7-dof curved beam and straight beam element. The free vibration characteristics of the curved bridges are compared with the straight bridges that have span length same as the average arc length of inside and outside girder of those. For the same case, the dynamic behavior is compared under seismic loadings. It is found that regular bridges classified by AASHTO are analyzed as if those were straight. To investigate the dynamic behavior of general curved bridges under seismic loading, the seismic loading directions and the subtended angle of curved bridges are varied.