• 제목/요약/키워드: free walking

검색결과 115건 처리시간 0.032초

Optimal Walking Trajectory for a Quadruped Robot Using Genetic-Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2492-2497
    • /
    • 2003
  • This paper presents optimal walking trajectory generation for a quadruped robot with genetic-fuzzy algorithm. In order to move a quadruped robot smoothly, both generations of optimal leg trajectory and free walking are required. Generally, making free walking is difficult to realize for a quadruped robot, because the patterned trajectory may interfere in the free walking. In this paper, we suggest the generation method for the leg trajectory satisfied with free walking pattern so as to avoid obstacle and walk smoothly. We generate via points of leg with respect to body motion, and then we use the genetic-fuzzy algorithm to search for the optimal via velocity and acceleration information of legs. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

장애물 높이에 따른 보행의 운동형상학적 변화에 대한 연구 (The Kinematic Patterns of Walking according to Obstacle's Height)

  • 정형국
    • 대한물리치료과학회지
    • /
    • 제15권3호
    • /
    • pp.55-63
    • /
    • 2008
  • Background : The Purposes of this study were to understand difference between free walking and obstacle over walking through the naked eye and motion analysis device, and to review merits of obstacle walking training as item of functional assessment in clinical situations. Methods : All participants were male and performed 3 types of walking methods: free walking, obstacle over walking with low block(height=10cm, width=8cm), and obstacle over walking with high block(height=20cm, width=8cm). All walking were performed 3 trials respectively. Results : In the naked eye, initial contact with toes occurred more than heel strike in obstacle over walking, and the flexion angle of hip and knee were increased in obstacle over walking. On interpretations though motion analysis device, cadence, gait speed and weight accept were significant statistically(p<.05). Cadence and gait speed were decreased, and weight accept duration was increased in obstacle over walking. Rotation among three pelvic motions was significant statistically(p<.05), flexion among three hip motions was significant statistically(p<.05) and flexion among three ankle motions was significant statistically(p<.05). Rotation and flexion among three ankle motions was significant statistically(p<.05). Conclusion : Both the naked eye and interpretations of the device presented many difference between free walking and obstacle over walking. In overcrossing obstacles, many participants appeared walking strategy by perform initial contact with toes. Knee flexion was most significant statistically(p<.05) in obstacle over walking with 20cm block.

  • PDF

짐나르기의 에너지 소요량 (Energy cost of loads carried on the hands, head, or feet)

  • 황대연;남기용
    • The Korean Journal of Physiology
    • /
    • 제5권2호
    • /
    • pp.29-40
    • /
    • 1971
  • Oxygen consumption, pulmonary ventilation, heart rate, and breathing frequency were measured on 8 men walking on a treadmill carrying load of 9 kg on hand, back, or head. Besides measurements were made on subjects carrying loads of 2.6 kg each on both feet. The speed of level walking was 4, 5, and 5.5km/hr and a fixed speed off km/hr with grades of 0, 3, 6, and 9%. Comparisons were made between free walking without load and walking with various types of loads. The following results were obtained. 1. In level or uphill walking the changes in oxygen consumption, pulmonary ventilation, breathing frequency and heart rate were smallest in back load walking, and largest in hand load walking. The method of back load was most efficient and hand load was the least efficient. The energy cost in head load walking was smaller than that of in hand load walking. It was assumed that foot load costed more energy than hand load. 2. In level walking the measured parameters increased abruptly at the speed of 5.5 km/hr. Oxygen consumption in a free walking at 4 km/hr was 11.4ml/kg b.wt., and 13.1 ml/kg b.wt. 5.5 km/hr, and in a hand load walking at 4 km/hr was 13.9, and 18.8 ml/kg b. wt. at 5.5 km/hr. 3. In uphill walking oxygen consumption and other parameters increased abruptly at the grade of 6%. Oxygen consumption at 4 km/hr and 0% grade was 11.4 ml/kg b. wt., 13.6 at 6% grade, and 16.21/kg b. wt. at 9% grade in a free walking. In back load walking oxygen consumption at 4km/hr and 0% grade was 12.3 ml/kg b.wt.,14.9 at 6% grade, and 18.7 ml/kg b.wt. In hand load walking the oxygen consumption was the greatest, namely, 13.9 at 0% grade, 17.9 at 6%, and 20.0 ml/kg b. wt. at 9% grade. 4. Both in level and uphill walking the changes in pulmonary ventilation and heart rate paralleled with oxygen consumption. 5. The changes in heart rate and breathing frequency in hand load were characteristic. Both in level and uphill walk breathing frequency increased to 30 per minute when a load was held on hand and showed a small increase as the exercise became severe. In the other method of load carrying the Peak value of breathing frequency was less than 30 Per minute. Heart rate showed 106 beats/minute even at a speed of 4 km/hr when a load was held on hand, whereas, heart rate was between, 53 and 100 beats/minute in the other types of load carriage. 6. Number of strides per minute in level walking increased as the speed increased. At the speed floater than 5 km/hr number of strides per minute of load carrying walk was greater than that of free walking. In uphill walk number of strides per minute decreased as the grade increased. Number of strides in hand load walk was greatest and back load walk showed the same number of strides as the free walk.

  • PDF

Reliability of Treadmill Exercise Testing in Adults With Chronic Hemiplegia and Elderly People

  • Kim, Nam-Joe;Lee, Suk-Min;Chung, Yi-Jung
    • 한국전문물리치료학회지
    • /
    • 제14권4호
    • /
    • pp.84-90
    • /
    • 2007
  • The purpose of this study was to assess the test-retest reliability of heart rate (HR) and velocity measurements during peak effort and free treadmill walking tests in older patients with gait-impaired chronic hemiparetic stroke and control group. Twenty-two adults (13 men, 9 women; mean age, $73.7{\pm}5.2$ yrs) with chronic hemiparetic stroke are the experimental group. Nineteen elderly people (5 men, 14 women; mean age, $72.3{\pm}3.5$ yrs) were recruited as control group. Patients had mild to moderate chronic hemiparetic gait deficits, making handrail support necessary during treadmill walking. Free and peak effort treadmill walking tests were measured and then repeated at least two days later. Reliability was calculated from HR and walking velocity during free and peak effort treadmill walking test. Among the people who had strokes, HR [ICC(2,1)=.85, r=.86] and velocity [ICC(2,1)=.93, r=.93] were good parameters during free testing. Maximal testing generated good results for HR [ICC(2,1)=.81, r=.82] and velocity [ICC(2,1)=.96, r=.96] with the chronic hemiparetic stroke. In elderly people, HR [ICC(2,1)=.59, r=.62] and velocity [ICC(2,1)=.77, r=.76] were moderately reliable during free testing. Maximal testing produced moderate parameters for HR [ICC(2,1)=.74, r=.74] and velocity [ICC(2,1)=.66, r=.66] in the elderly. This study provides that free and maximal treadmill testing produce highly reliable HR and velocity measurements in adults with chronic hemiplegia using minimal handrail support.

  • PDF

보행자세해석에 의한 경사로의 보행성 (Walkability on Ramps by Gait Analysis)

  • 유남형
    • 한국조경학회지
    • /
    • 제23권2호
    • /
    • pp.157-166
    • /
    • 1995
  • To investigate walkability of ramps, walking patterns of 18 healthy adults,12 aged 20 to 26 and 6 aged 68 to 76,were studied at free,rhythm constrained walking up or down ramp using goniometer and footswitch Ramp inclinations were set 4,8,12,16,20 degrees. The results were as follows. 1)The step length of subjects were decreased significantly in12$^{\circ}C$′or 16′free downramp walking. With regard to step length, some subject groups walked abnormally in 16" or 20" ramp walking 2) The step width of subjects were increased significantly in 12" or 16" ramp walking. 3) The cadence duration of some subject groups were increased in 12" upramp walking. 4) The double stance duration and double stance ratio of some subject groups were increased significantly in 8",12", or 16"upramp walking. 5) The maximum knee flexion angle of stance phase were increased in 12" ramp walking. 6)Most temporal parameters and spatial parameters of gait were increased or decreassd greatly between 4" ramp and 8" ramp or between 8′ramp and 12′ramp. But statistics significancy were not recognized 7) The results suggest that ramp inclination less than 8′(14%) -12′(21%) is desirable for the normal gait the ramp inclination must not exceed 16" -20" in unavoidable circumstances.

  • PDF

장애인 및 노약자를 위한 생활관련 시설의 연계방향 (A Suggestion Connecting Living Facilities for the Disabled and the Elderly)

  • 강병근;성기창;박광재;윤영삼;김상운;정현정;류상오
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제15권1호
    • /
    • pp.33-40
    • /
    • 2009
  • This study aims to plan connecting living facilities considering on the Barrier Free Walking of the disabled and the elderly in the residential area. We had found several physical problems on the pedestrian's way that becomes the major factor of disturbing the barrier free movement for using living facilities in the local area by investigations and enquetes. We had suggested the arrangement method for these physical problems on the pedestrian's way and building the ideal area for living facilities by the disposition stages with the result of investigations and enquetes. After these process, we had planned connecting living facilities considering on the Barrier Free Walking of the disabled and the elderly in the residential area.

  • PDF

바이패드 로봇의 안정적인 거동을 위한 제어 (Biped Robot Control for Stable Walking)

  • 김경대;박종형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF

하이힐 높이에 따른 균형성 (Effects of High-heeled Shoe with Different Height on the Balance during Standing and Walking)

  • 류지선
    • 한국운동역학회지
    • /
    • 제20권4호
    • /
    • pp.479-486
    • /
    • 2010
  • The purpose of this study was to determine the effects of high-heeled shoe on the quiet standing and gait balance. Twenty women (mean height: $161.6{\pm}3.3\;cm$, mean body mass: $53.8{\pm}6.3\;kg$, mean age: $23.8{\pm}2.7$ yrs..) who were without history or complain of lower limb pain took part in this study. They were asked to stand quietly on a force platform for 30 sec and walk on it at their preferred walking speed (mean speed $3.14{\pm}0.5\;km/hr$.) with wearing three different high-heeled shoe, 3, 7, 9 cm high for collecting data. Data were randomly recorded to collect two trials for quiet standing and five trials for walking The parameters to have been analyzed for comparison between three conditions of the height of high-heeled shoe were COP(Center of Pressure) range, COP velocity, sway area, and free moment on the static balance and COP range, COP velocity, and free moment on the dynamic balance. In this study, high-heel height affected on the COP range and velocity in the ante-posterior direction during walking, dynamic balance, but didn't affect on the quiet standing, static balance.

초파리의 보행행동에 관한 인위도태와 자연도태에 의한 유전적 효과 (Effects of Artificial and Natural Selection on Walking Behavior in Drosophila melanogaster)

  • 주종길;이현화
    • 한국동물학회지
    • /
    • 제26권2호
    • /
    • pp.95-106
    • /
    • 1983
  • Drosophila melanogaster의 Oregon-R 계통과 lethal free 집단을 대상으로 connected test tube apparatus를 사용하여 보행행동에 관한 rapid와 slow 행동을 방향성도태의 방법으로 15세대 동안에 걸쳐 도태하였다. 한편 10세대째부터 natural selection을 행하여 유전적 효과를 분석하였다. 1. 보행행동의 rapid와 slow 성질은 초기세대에서부터 뚜렷한 도태효과를 나타내어 제 7세대 이후에 각각 selection plateau에 달하였다. 2. 방향성 도태를 10세대 동안 실시한 후 realized heritability를 계산한 결과 rapid 성질은 $9\\sim14%$, slow 성질은 $11\\sim16%$로서 rapid행동보다 slow 행동의 유전율이 다소 높게 나타났다. 3. Rapid 성질을 지배하는 유전자와 slow 성질을 지배하는 유전자의 우열관계를 밝히기 위한 hybridization 실험결과 slow 유전자가 rapid 유전자에 대하여 partial dominance의 효과가 있었다. 4. 10세대 동안에 걸쳐 방향성 도태를 실시한 후 natural selection을 5세대 동안 실시한 결과 rapid 성질은 단 5세대만에 neutral의 상태 (6.5)로 복원되었으나 slow 성질은 모집단의 보행지수와 비교하여 전혀 변화가 없었다. 실험결과로 미루어 rapid와 slow 형질은 polygenic system에 의하여 control 되는 양적 형질임을 알았다. 한편 rapid 유전자는 natural selection에 의한 homeostasis의 효과가 있으나 slow 행동은 소수의 major gene에 의하여 지배되는 것을 알았다.

  • PDF

슬라이딩모드 제어기를 이용한 보행 훈련 로봇 팔의 힘제어 (Force Control of an Arm of Walking Training Robot Using Sliding Mode Controller)

  • 신호철;강창회;정승호;김승호
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.38-44
    • /
    • 2002
  • A walking training robot is proposed to provide stable and comfortable walking supports by reducing body weight load partially and a force control of an arm of walking training robot using sliding mode controller is also proposed. The current gait training apparatus in hospital are ineffective for the difficulty in keeping constant unloading level and for the constraint of patients' free walking. The proposed walking training robot effectively unloads body weight during walking. The walking training robot consists of an unloading manipulator and a mobile platform. The manipulator driven by an electro-mechanical linear mechanism unloads body weight in various levels. The mobile platform is wheel type, which allows patients to walt freely. The developed unloading system has advantages such as low noise level, lightweight, low manufacturing cost and low power consumption. A system model fur the manipulator is established using Lagrange's equation. To unload the weight of the patients, sliding mode control with p-control is adopted. Both control responses with a weight and human walking control responses are analyzed through experimental implementation to demonstrate performance characteristics of the proposed force controller.