• Title/Summary/Keyword: free vibration frequencies

Search Result 815, Processing Time 0.025 seconds

Exact third-order static and free vibration analyses of functionally graded porous curved beam

  • Beg, Mirza S.;Khalid, Hasan M.;Yasin, Mohd Y.;Hadji, L.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • An exact solution based on refined third-order theory (TOT) has been presented for functionally graded porous curved beams having deep curvature. The displacement field of the refined TOT is derived by imposing the shear free conditions at the outer and inner surfaces of curved beams. The properties of the two phase composite are tailored according the power law rule and the effective properties are computed using Mori-Tanaka homogenization scheme. The equations of motion as well as consistent boundary conditions are derived using the Hamilton's principle. The curved beam stiffness coefficients (A, B, D) are obtained numerically using six-point Gauss integration scheme without compromising the accuracy due to deepness (1 + z/R) terms. The porosity has been modeled assuming symmetric (even) as well as asymmetric (uneven) distributions across the cross section of curved beam. The programming has been performed in MATLAB and is validated with the results available in the literature as well as 2D finite element model developed in ABAQUS. The effect of inclusion of 1 + z/R terms is studied for deflection, stresses and natural frequencies for FG curved beams of different radii of curvature. Results presented in this work will be useful for comparison of future studies.

Frequency analysis of deep curved nonlocal FG nanobeam via DTM

  • S. A. H. Hosseini;O. Rahmani
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.603-614
    • /
    • 2023
  • In this paper, frequency analysis of curved functionally graded (FG) nanobeam by consideration of deepness effect has been studied. Differential transform method (DTM) has been used to obtain frequency responses. The nonlocal theory of Eringen has been applied to consider nanoscales. Material properties are supposed to vary in radial direction according to power-law distribution. Differential equations and related boundary conditions have been derived using Hamilton's principle. Finally, by consideration of nonlocal theory, the governing equations have been derived. Natural frequencies have been obtained using semi analytical method (DTM) for different boundary conditions. In order to study the effect of deepness, the deepness term is considered in strain field. The effects of the gradient index, radius of curvature, the aspect ratio, the nonlocal parameter and interaction of aforementioned parameters on frequency value for different boundary conditions such as clamped-clamped (C-C), clamped-hinged (C-H), and clamped-free (C-F) have been investigated. In addition, the obtained results are compared with the results in previous literature in order to validate present study, a good agreement was observed in the present results.

Internal modals interactions analysis in terms of AFG nanorods based on Rayleigh model of nonlinear nonlocal axial behaviour

  • Somaye Jamali Shakhlavi;Shahrokh Hosseini Hashemi;Reza Nazemnezhad
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.557-569
    • /
    • 2024
  • Nonlinear internal modals interactions analysis of axially functionally graded nanorods is evaluated on the basis of nonlocal elasticity theory and Rayleigh beam model for the first time. Functionally graded materials can be determined as nonhomogeneous composites which are obtained by combining of two various materials in order to get a new ideal material. In this research, material properties of nanorods are supposed to be calmly varied along the axial direction. Hamilton's principle is used to derive the equations with consideration of Von-Kármán's geometrically nonlinearity. Harmonic Differential Quadrature (HDQ) and Multiple Scale (MS) solution techniques are used to derive an approximate-analytic solution to the linear and nonlinear free axial vibration problem of non-classical nanorods for clamped-clamped and clamped-free boundary conditions. A parametric study is carried out to indicate the effects of index of AFG, aspect ratio, mode number, internal resonances and nonlinear amplitude on nonlinear nonlocal frequencies of axially functionally graded nanorods. Also, the effects of nonlocal and nonlinear coefficients and AFG index on relationships of internal resonances have been investigated. The presented theatrical-semi analytical model has the ability to predict very suitable results for extracting the internal modal interactions in the AFG nanorod.

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Dynamic analysis of semi-rigidly connected and partially embedded piles via the method of reverberation-ray matrix

  • Yan, Wei;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.269-289
    • /
    • 2012
  • Free vibration and dynamic responses of piles semi-rigidly connected with the superstructures are investigated. Timoshenko beam theory is employed to characterize the pile partially embedded in a two-parameter elastic foundation. The formulations for the method of reverberation-ray matrix (MRRM) are then derived to investigate the dynamics of the pile with surface cracks, which are modeled as massless rotational springs. Comparison with existent numerical and experimental results indicates the proposed method is very effective and accurate for dynamic analysis, especially in the high frequency range. Finally, the effects of some physical parameters on the natural frequencies, frequency responses and transient responses of the piles are studied.

The Free Vibration Analyses by Using Two Dimensional 6-Node Element and Three Dimensional 16-Node element with Modification of Gauss Sampling Point (가우스 적분점을 수정한 2차원 6-절점 요소 및 3차원 16-절점 요소에 의한 자유진동해석)

  • 김정운;경진호;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2922-2931
    • /
    • 1994
  • We propose a modified 6-node element, where the sampling point of Gauss quadrature moved in the thickness direction. The modified 6-node element has been applied to static problems and forced motion analyses. In this study, this method is extended to the finite element analysis of the natural frequencies of two dimensional problems. We also propose a modified 16-node element for three dimensional problems, which behaves much like a 20-node element with smaller degree of freedom. The modified 6-node and 16-node elements have been applied to the modal analyses of beams and plates, respectively. The results agree well with the results of the 8-node or 20-node element models.

Thermal Buckling Characteristics of Composite Conical Shell Structures

  • Woo, Ji-Hye;Rho, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2007
  • Thermal Buckling and free vibration analyses of multi-layered composite conical shells based on a layerwise displacement theory are performed. The Donnell's displacement-strain relationships of conical shell structure are applied. The natural frequencies are compared with the ones existing in the previous literature for laminated conical shells with several cone semi-vertex angles. Moreover, the thermal buckling behaviors of the laminated conical shell are investigated to consider the effect of the semi-vertex angle, subtended angle, and radius to thickness ratio on the structural stability.

Dynamic characteristics of transmission line conductors and behaviour under turbulent downburst loading

  • Darwish, Mohamed M.;El Damatty, Ashraf A.;Hangan, Horia
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.327-346
    • /
    • 2010
  • During the past decade, many electrical transmission tower structures have failed during downburst events. This study is a part of a research program aimed to understand the behaviour of transmission lines under such localized wind events. The present study focuses on the assessment of the dynamic behaviour of the line conductors under downburst loading. A non-linear numerical model, accounting for large deformations and the effect of pretension loading, is developed and used to predict the natural frequencies and mode shapes of conductors at various loading stages. A turbulence signal is extracted from a set of full-scale data. It is added to the mean component of the downburst wind field previously evaluated from a CFD analysis. Dynamic analysis is performed using various downburst configurations. The study reveals that the response is affected by the background component, while the resonant component turns to be negligible due large aerodynamic damping of the conductors.

Bending analysis of FGM plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.543-558
    • /
    • 2016
  • The response of functionally graded ceramic-metal plates is investigated using theoretical formulation, Navier's solutions, and a new displacement based on the high-order shear deformation theory are presented for static analysis of functionally graded plates. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results of the new refined plate theory are presented to show the effect of the material distribution on the deflections, stresses and fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the static and free vibration behavior of functionally graded plates.

Dynamic stiffness formulations for harmonic response of infilled frames

  • Bozyigit, Baran;Yesilcea, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.183-191
    • /
    • 2018
  • In this paper, harmonic responses of infilled multi-storey frames are obtained by using a single variable shear deformation theory (SVSDT) and dynamic stiffness formulations. Two different planar frame models are used which are fully infilled and soft storey. The infill walls are modeled by using equivalent diagonal strut approach. Firstly, free vibration analyses of bare frame and infilled frames are performed. The calculated natural frequencies are tabulated with finite element solution results. Then, harmonic response curves (HRCs) of frame models are plotted for different infill wall thickness values. All of the results are presented comparatively with Timoshenko beam theory results to reveal the effectiveness of SVSDT which considers the parabolic shear stress distribution along the frame member cross-sections.