• Title/Summary/Keyword: free vibration frequencies

Search Result 815, Processing Time 0.028 seconds

Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.131-157
    • /
    • 2018
  • In this study, Eringen nonlocal elasticity theory in conjunction with surface elasticity theory is employed to study nonlinear free vibration behavior of FG nano-plate lying on elastic foundation, on the base of Reddy's plate theory. The material distribution is assumed as a power-law function and effective material properties are modeled using Mori-Tanaka homogenization scheme. Hamilton's principle is implemented to derive the governing equations which solved using DQ method. Finally, the effects of different factors on natural frequencies of the nano-plate under hygrothermal situation and various boundary conditions are studied.

In-Plane Vibration Analysis of Asymmetric Curved Beams Using DQM (DQM을 이용한 비대칭 곡선보의 내평면 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2734-2740
    • /
    • 2010
  • The free in-plane vibration of asymmetric circular curved beams with varying cross-section is analyzed by the differential quadrature method (DQM) neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and boundary conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives the good accuracy even with a small number of grid points.

Mode localization and veering of natural frequency loci in two circular plates coupled with a fluid

  • Jeong, Kyeong-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.719-739
    • /
    • 2006
  • An analytical method for the free vibration of two circular plates coupled with an inviscid and compressible fluid is developed by the Rayleigh-Ritz method. The fluid is bounded by a rigid cylindrical vessel and two circular plates with an unequal thickness and diameter. It was found that the theoretical results could predict well the fluid-coupled natural frequencies with an excellent accuracy when compared with the finite element analysis results. As the fluid thickness increases or the plate thickness difference increases, an abrupt curve veering in the natural frequency loci of the neighboring modes and drastic changes in the corresponding mode shapes are observed. The mode localization frequently appears in the higher modes and in the wide gap between the plates because of a decrease in the fluid coupling owing to the fluid dispersion effect.

A Numerical Study on the Effects of the Design Parameters upon Fan Performance and Noise (축류홴의 설계 변수가 홴의 성능과 소음에 미치는 영향의 수치적 연구)

  • 전완호;백승조;김창준;윤홍열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.264-269
    • /
    • 2001
  • Axial fans are widely used in household electrical appliances due to their easy usage and high flow rate for cooling capacity. At the same time, the noise generated by these fans causes one of serious problems. In order to calculate the noise of a fan, we develop the software IFD - Intranet Fans Design. With this software we can design, analysis the performance and predict the noise of fan. The prediction model, which allowed the calculation of acoustic pressure at the blade passing frequency and it's higher harmonic frequencies, has been developed by Lowson's equation. To calculate the unsteady resultant force of the blade, time-marching free-wake method is used. The objective of this study is to calculate the effects of number of blades, rotating velocity, and sweep angle on the noise of fan..

  • PDF

Dynamic Analysis of a Rotor System Having Thin-walled Cylinder Combined with Its Shaft (회전축에 Thin-walled Cylinder가 결합된 회전체 시스템의 동적 해석)

  • Choi, Young-Hyu;Park, Seon-Kyun;Hoong, Dae-Sun;Chung, Won-Jee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.631-636
    • /
    • 2000
  • In this paper a transfer method model was introduced in order to analyze critical speeds and vibration modes of a flexible rotor system, whose rotor shaft is cupped into and fitted with a thin-walled cylinder at its end. The computed analysis results were compared with those of the experimental modal test. Both results show good agreement each other. Furthermore the free-run(or run-down) test result for the real rotor system also shows that the proposed transfer matrix method modelling can be successfully applicable to analyzing accurate critical speeds(or natural frequencies) of the rotor system.

  • PDF

Analysis of Natural Frequencies and Squeal Noise of KTX Brake Unit (KTX 제동장치의 고유진동수와 스퀼소음 분석)

  • Goo, ByeongChoon;Na, InKyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.954-961
    • /
    • 2014
  • Brake squeal noise of KTX is very uncomfortable to passengers and workers in stations. A lot of study has been conducted to inquire into the mechanism of the squeal noise. But understanding of the brake squeal noise is still challenging. In this study, we developed a full-scale tester equipped with a KTX mechanical brake unit. And we measured the vibrational characteristics of each component of the brake unit and compared them with frequency response functions of brake squeal noise measured also in the tester. It was found that the brake squeal noise was more closely related to the vibrational characteristics of the brake pads and hangers in friction condition than those of free components.

Rotordynamic design of a turbogenerator supported by air foil bearings (공기포일베어링에 지지된 터보제너레이터의 회전체동역학적 설계)

  • Kim, Y.C.;An, K.Y.;Park, M.R.;Park, J.Y.;Choi, B.S.;Lee, A.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-276
    • /
    • 2006
  • This paper shows the rotordynamic characteristics of a turbo-generator for a BOP of a fuel cell system. The rotor-bearing system consists of magnetic shaft and compressor-turbine shaft, and the two shafts are connected by spline coupling and supported by oil free air foil bearing. Preliminary design according to several parameter is considered in detail. Static and dynamic characteristics of the AFB are estimated by the soft elasto-hydrodynamic analysis technique and the perturbation method. The results of the natural frequencies, mode shape, and unbalance response analysis are presented.

  • PDF

Free vibration analysis of axially moving beam under non-ideal conditions

  • Bagdatli, Suleyman M.;Uslu, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.597-605
    • /
    • 2015
  • In this study, linear vibrations of an axially moving beam under non-ideal support conditions have been investigated. The main difference of this study from the other studies; the non-ideal clamped support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions have been obtained using Hamilton's Principle. Method of Multiple Scales, a perturbation technique, has been employed for solving the linear equations of motion. Linear equations of motion are solved and effects of different parameters on natural frequencies are investigated.

Exact mathematical solution for free vibration of thick laminated plates

  • Dalir, Mohammad Asadi;Shooshtari, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.835-854
    • /
    • 2015
  • In this paper, the modified form of shear deformation plate theories is proposed. First, the displacement field geometry of classical and the first order shear deformation theories are compared with each other. Using this comparison shows that there is a kinematic relation among independent variables of the first order shear deformation theory. So, the modified forms of rotation functions in shear deformation theories are proposed. Governing equations for rectangular and circular thick laminated plates, having been analyzed numerically so far, are solved by method of separation of variables. Natural frequencies and mode shapes of the plate are determined. The results of the present method are compared with those of previously published papers with good agreement obtained. Efficiency, simplicity and excellent results of this method are extensible to a wide range of similar problems. Accurate solution for governing equations of thick composite plates has been made possible for the first time.

Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions

  • Arani, Ali Ghorbanpour;Kiani, Farhad
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.149-165
    • /
    • 2018
  • Using the modified couple stress theory and Euler-Bernoulli beam theory, this paper studies nonlinear vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation. Using the Hamilton's principle, the set of the governing equations are derived and solved numerically using differential quadrature method (DQM), Newark beta method and arc-length technique for all kind of the boundary conditions. First convergence and accuracy of the presented solution are demonstrated and then effects of radius of gyration, Poisson's ratio, small scale parameters, temperature changes and coefficients of the foundation on the linear and nonlinear natural frequencies and dynamic response of the microbeam are investigated.