• Title/Summary/Keyword: free vibration frequencies

Search Result 815, Processing Time 0.025 seconds

Modal Analysis of Conical Shell Filled with Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1848-1862
    • /
    • 2006
  • As a basic study on the fluid-structure interaction of the shell structure, a theoretical formulation has been suggested on the free vibration of a thin-walled conical frustum shell filled with an ideal fluid, where the shell is assumed to be fixed at both ends. The motion of fluid coupled with the shell is determined by means of the velocity potential flow theory. In order to calculate the normalized natural frequencies that represent the fluid effect on a fluid-coupled system, finite element analyses for a fluid-filled conical frustum shell are carried out. Also, the effect of apex angle on the frequencies is investigated.

A developed hybrid method for crack identification of beams

  • Vosoughi, Ali.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.401-414
    • /
    • 2015
  • A developed hybrid method for crack identification of beams is presented. Based on the Euler-Bernouli beam theory and concepts of fracture mechanics, governing equation of the cracked beams is reformulated. Finite element (FE) method as a powerful numerical tool is used to discritize the equation in space domain. After transferring the equations from time domain to frequency domain, frequencies and mode shapes of the beam are obtained. Efficiency of the governed equation for free vibration analysis of the beams is shown by comparing the results with those available in literature and via ANSYS software. The used equation yields to move the influence of cracks from the stiffness matrix to the mass matrix. For crack identification measured data are produced by applying random error to the calculated frequencies and mode shapes. An objective function is prepared as root mean square error between measured and calculated data. To minimize the function, hybrid genetic algorithms (GAs) and particle swarm optimization (PSO) technique is introduced. Efficiency, Robustness, applicability and usefulness of the mixed optimization numerical tool in conjunction with the finite element method for identification of cracks locations and depths are shown via solving different examples.

Vibration Analysis of Curved Beams Using Differential Quadrature (수치해석(미분구적법 DQM)을 이용한 곡선보의 진동분석)

  • Ki-Jun Kang
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.199-207
    • /
    • 1999
  • The differential quadrature method (DQM) is applied to computation of eigenvalues of the equations of motion governing the free in-plane and out-of-plane vibrations for circular curved beams. Fundamental frequencies are calculated for the members with various end conditions and opening angles. The results are compared with existing exact solutions and numerical solutions by other methods (Rayleigh-Ritz, Galerkin or FEM) for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Hamza-Cherif, Sidi Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.151-167
    • /
    • 2006
  • A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

Vibration analysis of a cracked beam with axial force and crack identification

  • Lu, Z.R.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.355-371
    • /
    • 2012
  • A composite element method (CEM) is presented to analyze the free and forced vibrations of a cracked Euler-Bernoulli beam with axial force. The cracks are introduced by using Christides and Barr crack model with an adjustment on one crack parameter. The effects of the cracks and axial force on the reduction of natural frequencies and the dynamic responses of the beam are investigated. The time response sensitivities with respect to the crack parameters (i.e., crack location, crack depth) and the axial force are calculated. The natural frequencies obtained from the proposed method are compared with the analytical results in the literature, and good agreement is found. This study shows that the cracks in the beam may have significant effects on the dynamic responses of the beam. In the inverse problem, a response sensitivity-based model updating method is proposed to identify both a single crack and multiple cracks from measured dynamic responses. The cracks can be identified successfully even using simulated noisy acceleration responses.

The Added Mass by Schwarz-Christoffel Transformation (Schwarz-Christoffel 변환(變換)에 의한 부가질량(附加質量)의 계산(計算))

  • J.H.,Hwang;C.H.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.4
    • /
    • pp.13-20
    • /
    • 1981
  • The hydrodynamic added mass of two dimensional cylinders oscillating vertically at high frequencies in the free surface is of interest to ship vibration problems. Conformal transformation is one of the methods commonly in use for computing the inertia coefficient. Especially, Schwarz-Christoffel transformation has been employed to evaluate the inertia coefficient for the cylinders of straight frames and chines. In this paper, the inertia coefficient for the cylinders with round corners in vertical oscillation at high frequencies are evaluated by employing the Schwarz-Christoffel transformation for the concave corner. The results of calculation by employing the Schwarz-Christoffel transformation are found to be well within the expected range of values compared to Lewis form and the results obtained by source distribution method.

  • PDF

Coupld Free Lateral Vibration Analysis of Shafting by the Finite Element Method (유한요소법(有限要素法)에 의(依)한 축계(軸系)의 연성자유횡진동해석(聯成自由橫振動解析)에 관(關)한 연구(硏究))

  • Si-Young,Ahn
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 1986
  • Coupled lateral vibrations of shafting is analyzed by the Finite Element Method. In the problem formulation axial force, elastic foundation effects and rotary inertia effects are taken into account. A computer program is developed to calculate natural frequencies of the shafting, and used to calculate natural frequencies of the experimental model shafting, which the author used for the paper[11]. The results show good agreement with the measured values. The results are also compared with those of the Transfer Matrix Method. From the comparison it is found that both results agree each other.

  • PDF

Recommendation for the modelling of Donnell shell: The relationship between non-local parameter and frequency

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Sehar Asghar;Abdelouhed Tounsi
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.165-172
    • /
    • 2023
  • The vibration analysis of armchair, zigzag and chiral double-walled carbon nanotubes has been developed by inserting the nonlocal theory of elasticity into thin shell theory. First Donnell shell theory is employed while exercising wave propagation approach. Scale effects are realized by using different values of nonlocal parameters under certain boundary conditions. The natural frequencies have been investigated and displayed for various non-local parameters. It is noticed that on increasing nonlocal parameter, the frequency curve tends to decrease. The frequency estimates of clamped-free boundary condition are less than those of clamped-clamped and simply supported computations. The frequency comparisons are presented for armchair, zigzag and chiral nanotubes. The software MATLAB is used to extract the frequencies of double walled carbon nanotubes.

Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite

  • Mohammadimehr, M.;Mohammadi-Dehabadi, A.A.;Akhavan Alavi, S.M.;Alambeigi, K.;Bamdad, M.;Yazdani, R.;Hanifehlou, S.
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.405-422
    • /
    • 2018
  • In this research, experimental tensile test and manufacturing of carbon nanotube reinforced composite beam (CNTRC) is presented. Also, bending, buckling, and vibration analysis of CNTRC based on various beam theories such as Euler-Bernoulli, Timoshenko and Reddy beams are considered. At first, the experimental tensile tests are carried out for CNTRC and composite beams in order to obtain mechanical properties and then using Hamilton's principle the governing equations of motion are derived for Euler Bernoulli, Timoshenko and Reddy theories. The results have a good agreement with the obtained results by similar researches and it is shown that adding just two percent of carbon nanotubes increases dimensionless fundamental frequency and critical buckling load as well as decreases transverse deflection of composite beams. Also, the influences of different manufacturing processes such as hand layup and industrial methods using vacuum pump on composite properties are investigated. In these composite beams, glass fibers used in an epoxy matrix and for producing CNTRC, CNTs are applied as reinforcement particles. Applying two percent of CNTs leads to increase the mechanical properties and increases natural frequencies and critical buckling load and decreases deflection. The obtained natural frequencies and critical buckling load by theoretical method are higher than other methods, because there are some inevitable errors in industrial and hand layup method. Also, the minimum deflection occurs for theoretical methods, in bending analysis. In this study, Young's and shear modulli as well as density are obtained by experimental test and have not been used from the results of other researches. Then the theoretical analysis such as bending, buckling and vibration are considered by using the obtained mechanical properties of this research.

Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers

  • Liang, Di;Wu, Qiong;Lu, Xuemei;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.47-62
    • /
    • 2020
  • In this study, free vibration behavior of trapezoidal sandwich plates with porous core and two graphene platelets (GPLs) reinforced nanocomposite outer layers are presented. The distribution of pores and GPLs are supposed to be functionally graded (FG) along the thickness of core and nanocomposite layers, respectively. The effective Young's modulus of the GPL-reinforced (GPLR) nanocomposite layers is determined using the modified Halpin-Tsai micromechanics model, while the Poisson's ratio and density are computed by the rule of mixtures. The FSDT plate theory is utilized to establish governing partial differential equations and boundary conditions (B.C.s) for trapezoidal plate. The governing equations together with related B.C.s are discretized using a mapping- generalized differential quadrature (GDQ) method in the spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained by GDQ method. Validity of current study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns of two faces through the thickness, porosity coefficient and distribution of porosity on natural frequencies characteristics. New results show the importance of this permeates on vibrational characteristics of porous/GPLR nanocomposite plates. Finally, the influences of B.C.s and dimension as well as the plate geometry such as face to core thickness ratio on the vibration behaviors of the trapezoidal plates are discussed.