• Title/Summary/Keyword: free vibration frequencies

Search Result 815, Processing Time 0.024 seconds

Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation

  • Eyvazian, Arameh;Musharavati, Farayi;Talebizadehsardari, Pouyan;Sebaey, Tamer A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.711-727
    • /
    • 2020
  • In the present research, the free vibration analysis of functionally graded (FG) nanocomposite deep spherical shells reinforced by graphene platelets (GPLs) on elastic foundation is performed. The elastic foundation is assumed to be Winkler-Past ernak-type. It is also assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the nanocomposite shell. Volume fraction of the graphene platelets as nanofillers may be different in the layers. The modified HalpinTsai model is used to approximate the effective mechanical properties of the multilayer nanocomposite. With the aid of the first order shear deformation shell theory and implementing Hamilton's principle, motion equations are derived. Afterwards, the generalized differential quadrature method (GDQM) is utilized to study the free vibration characteristics of FG-GPLRC spherical shell. To assess the validity and accuracy of the presented method, the results are compared with the available researches. Finally, the natural frequencies and corresponding mode shapes are provided for different boundary conditions, GPLs volume fraction, types of functionally graded, elastic foundation coefficients, opening angles of shell, and thickness-to-radius ratio.

Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections

  • Wu, Helong;Kitipornchai, Sritawat;Yang, Jie
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.319-332
    • /
    • 2018
  • This paper investigates the free vibration of geometrically imperfect functionally graded car-bon nanotube-reinforced composite (FG-CNTRC) beams that are integrated with two sur-face-bonded piezoelectric layers and subjected to a combined action of a uniform temperature rise, a constant actuator voltage and an in-plane force. The material properties of FG-CNTRCs are assumed to be temperature-dependent and vary continuously across the thick-ness. A generic imperfection function is employed to simulate various possible imperfections with different shapes and locations in the beam. The governing equations that account for the influence of initial geometric imperfection are derived based on the first-order shear deformation theory. The postbuckling configurations of FG-CNTRC hybrid beams are determined by the differential quadrature method combined with the modified Newton-Raphson technique, after which the fundamental frequencies of hybrid beams in the postbuckled state are obtained by a standard eigenvalue algorithm. The effects of CNT distribution pattern and volume fraction, geometric imperfection, thermo-electro-mechanical load, as well as boundary condition are examined in detail through parametric studies. The results show that the fundamental frequency of an imperfect beam is higher than that of its perfect counterpart. The influence of geometric imperfection tends to be much more pronounced around the critical buckling temperature.

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

Dynamic stiffness analysis of steel-concrete composite beams

  • Li, Jun;Huo, Qiji;Li, Xiaobin;Kong, Xiangshao;Wu, Weiguo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.577-593
    • /
    • 2014
  • An exact dynamic stiffness method is introduced for investigating the free vibration characteristics of the steel-concrete composite beams consisting of a reinforced concrete slab and a steel beam which are connected by using the stud connectors. The elementary beam theory is used to define the dynamic behaviors of the two beams and the relative transverse deformation of the connectors is included in the formulation. The dynamic stiffness matrix is formulated from the exact analytical solutions of the governing differential equations of the composite beams in undamped free vibration. The application of the derived dynamic stiffness matrix is illustrated to predict the natural frequencies and mode shapes of the steel-concrete composite beams with seven boundary conditions. The present results are compared to the available solutions in the literature whenever possible.

Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory

  • Behera, Susanta;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.213-232
    • /
    • 2018
  • First time, an exact solution for free vibration of the Levy-type rectangular laminated plate is developed considering the most efficient Zig-Zag theory (ZIGT) and third order theory (TOT). The plate is subjected to hard simply supported boundary condition (Levy-type) along x axis. Using the equilibrium equations and the plate constitutive relations, a set of 12 m first order differential homogenous equations are obtained, containing displacements and stress resultant as primary variables. The natural frequencies of a single-layer isotropic, multi-layer composites and sandwich plates are tabulated for three values of length-to-thickness ratio (S) and five set of boundary conditions and further assessed by comparing with existing literature and recently developed 3D EKM (extended Kantorovich method) solution. It is found that for the symmetric composite plate, TOT produces better results than ZIGT. For antisymmetric and sandwich plates, ZIGT predicts the frequency for different boundary conditions within 3% error with respect to 3D elasticity solution while TOT gives 10% error. But, ZIGT gives better predictions than the TOT concerning the displacement and stress variables.

A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates

  • Sellam, Souad;Draiche, Kada;Tlidji, Youcef;Addou, Farouk Yahia;Benachour, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • In the present paper, a simple analytical model is developed based on a new refined parabolic shear deformation theory (RPSDT) for free vibration and buckling analysis of orthotropic rectangular plates with simply supported boundary conditions. The displacement field is simpler than those of other higher-order theories since it is modeled with only two unknowns and accounts for a parabolic distribution of the transverse shear stress through the plate thickness. The governing differential equations related to the present theory are obtained from the principle of virtual work, while the solution of the eigenvalue problem is achieved by assuming a Navier technique in the form of a double trigonometric series that satisfy the edge boundary conditions of the plate. Numerical results are presented and compared with previously published results for orthotropic rectangular plates in order to verify the precision of the proposed analytical model and to assess the impacts of several parameters such as the modulus ratio, the side-to-thickness ratio and the geometric ratio on natural frequencies and critical buckling loads. From these results, it can be concluded that the present computations are in excellent agreement with the other higher-order theories.

Free vibration analysis of rectangular plate with arbitrary edge constraints using characteristic orthogonal polynomials in assumed mode method

  • Kim, Kook-Hyun;Kim, Byung-Hee;Choi, Tae-Muk;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.267-280
    • /
    • 2012
  • An approximate method based on an assumed mode method has been presented for the free vibration analysis of a rectangular plate with arbitrary edge constraints. In the presented method, natural frequencies and their mode shapes of the plate are calculated by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. Characteristic orthogonal polynomials having the property of Timoshenko beam functions which satisfies edge constraints corresponding to those of the objective plate are used. In order to examine the accuracy of the proposed method, numerical examples of the rectangular plates with various thicknesses and edge constraints have been presented. The results have shown good agreement with those of other methods such as an analytic solution, an approximate solution, and a finite element analysis.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

Analysis of Free Vibration Characteristics of Tapered Friction Piles in Non-homogeneous Soil Layers (불균질 지반에 설치된 테이퍼 마찰말뚝의 자유진동 특성 분석)

  • Lee, Joon Kyu;Ko, Junyoung;Lee, Kwangwoo;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2019
  • This paper presents a new analytical model for estimating the free vibration of tapered friction piles. The governing differential equation for the free vibration of statically axially-loaded piles embedded in non-homogeneous soil is derived. The equation is numerically integrated by the Runge-Kutta method, and then the eigenvalue of natural frequency is determined by the Regula-Falsi scheme. For a cylindrical non-tapered pile, the computed natural frequencies compare well with the available data from literature. Numerical examples are presented to investigate the effects of the tapering, the skin friction resistance, the end condition of the pile, the vertical compressive loading, and the soil non-homogeneity on the natural frequency and mode shape of tapered friction piles.