• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.036 seconds

Numerical Analysis on Turning and Yaw Checking Abilities of KCS in Calm Water a Based on Free-Running Simulations (가상 자유 항주를 이용한 KCS 선형의 정수 중 선회 및 변침 성능 해석)

  • Yang, Kyung-Kyu;Kim, Yoo-Chul;Kim, Kwang-Soo;Yeon, Seong Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To understand physical phenomena of ship maneuvering deeply, a numerical study based on computational fluid dynamics is required. A computational method that can simulate the interaction between the ship hull, propeller, and rudder will provide informative local flows during ship maneuvering tests. The analysis of local flows can be applied to improve a physical model of ship maneuvering that has been widely used in maneuvering simulations. In this study, the numerical program named as WAVIS that has been developed for ship resistance and propulsion problems is extended to simulate ship maneuvering by free-running tests. The six degree-of-freedom of ship motion is implemented based on Euler angles and the overset technique is applied to treat the moving grid of ship hull and rudder. The propulsion force due to a propeller is calculated by a panel method that is based on the lifting-surface theory. The newly extended code is applied to simulate turning and zig-zag tests of KCS and the comparison with the available experimental data has been made.

Free vibration investigation of functionally graded plates with temperature-dependent properties resting on a viscoelastic foundation

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Amina Attia;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • The free vibration of temperature-dependent functionally graded plates (FGPs) resting on a viscoelastic foundation is investigated in this paper using a newly developed simple first-order shear deformation theory (FSDT). Unlike other first order shear deformation (FSDT) theories, the proposed model contains only four variables' unknowns in which the transverse shear stress and strain follow a parabolic distribution along the plates' thickness, and they vanish at the top and bottom surfaces of the plate by considering a new shape function. For this reason, the present theory requires no shear correction factor. Linear steady-state thermal loads and power-law material properties are supposed to be graded across the plate's thickness. Uniform, linear, non-linear, and sinusoidal thermal rises are applied at the two surfaces for simply supported FGP. Hamilton's principle and Navier's approach are utilized to develop motion equations and analytical solutions. The developed theory shows progress in predicting the frequencies of temperature-dependent FGP. Numerical research is conducted to explain the effect of the power law index, temperature fields, and damping coefficient on the dynamic behavior of temperature-dependent FGPs. It can be concluded that the equation and transformation of the proposed model are as simple as the FSDT.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

A new three-dimensional model for free vibration analysis of functionally graded nanoplates resting on an elastic foundation

  • Mahsa Najafi;Isa Ahmadi;Vladimir Sladek
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.273-291
    • /
    • 2024
  • This paper presents a three-dimensional displacement-based formulation to investigate the free vibration of functionally graded nanoplates resting on a Winkler-Pasternak foundation based on the nonlocal elasticity theory. The material properties of the FG nanoplate are considered to vary continuously through the thickness of the nanoplate according to the power-law distribution model. A general three-dimensional displacement field is considered for the plate, which takes into account the out-of-plane strains of the plate as well as the in-plane strains. Unlike the shear deformation theories, in the present formulation, no predetermined form for the distribution of displacements and transverse strains is considered. The equations of motion for functionally graded nanoplate are derived based on Hamilton's principle. The solution is obtained for simply-supported nanoplate, and the predicted results for natural frequencies are compared with the predictions of shear deformation theories which are available in the literature. The predictions of the present theory are discussed in detail to investigate the effects of power-law index, length-to-thickness ratio, mode numbers and the elastic foundation on the dynamic behavior of the functionally graded nanoplate. The present study presents a three-dimensional solution that is able to determine more accurate results in predicting of the natural frequencies of flexural and thickness modes of nanoplates. The effects of parameters that play a key role in the analysis and mechanical design of functionally graded nanoplates are investigated.

Study on the Free Roll Decay and Resistance Performances of Fishing Vessels by Varying Appendages (어선 부가물 별 자유 횡 동요 감쇠 및 저항성능에 관한 연구)

  • Mijin Yoon;Janghoon Seo;Dong-Woo Park;Chanjae Lee;Intae Kim;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.688-696
    • /
    • 2023
  • In the present study, free roll decay and resistance performances of fishing vessels were evaluated with the combinations and variations of in the parameters of appendages which are attached to improve motion performance of fishing vessels. Computational Ffluid Ddynamics was used to perform free roll decay and resistance analysis. The roll period and decay coefficient were derived by the variations in the combination and dimensions of the primary appendages of the bilge keel and the under keel. It was observed thatThe variations of in the length of the under keel did not significantly impact to the roll damping coefficient. Conversely, for the bilge keel, an increase in the length and angle resulted in an increase in the roll damping coefficient. Comparison of resistance performance was additionally assessed among the selected hulls with the appendages and bare hull. The resistance of the hull with the appendages was higher than that of the bare hull due owing to the changes of in the pressure on the surface of the hull and trim angle. Throughout the present study, the impact of appendage parameter and arrangement on the free roll decay and resistance performance of fishing vessels were was assessed,. which This will be beneficial for the application of appendages to fishing vessels.

A Parametric Study on Site Amplification using Equivalent Linear Analysis (등가선형해석을 이용한 지반증폭 영향 요소 연구)

  • 김동수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.98-107
    • /
    • 2000
  • Free-field ground motion during earthquake is significantly affected by the local site conditions and it is essential for the seismic design to perform the ground response analysis In this study, ground response analyses based on the equivalent linear method were carried out to evaluate the effects of various ground conditions on the site amplification. Four major factors including the depth of the site(very soft and dense soil), the impedance ratio between soil layer and bed rock, linear analysis versus equivalent linear analysis, and the location of soft soil layer were deeply discussed. Based on the analysis results, the importance of various local site conditions on the site amplification was emphasized.

  • PDF

The Influence of the constraint condition on the Roller-rig (주행시험대 구속조건에 따른 영향 분석)

  • Kim, Nam-Po;Park, Joon-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1074-1079
    • /
    • 2011
  • This paper describes the influence on the nonlinear critical speed results of a specific railway vehicle depending on various constraint conditions. In the roller-rig tests, proper constraints are inevitable to safely hold the test vehicles. Particularly, the test results using KRRI roller-rig are more sensitive to constraint conditions because it is a kind of semi-full car type. In this study, nonlinear critical speed of specific vehicle with regards to several constraint cases were predicted by computational analysis and these results were compared to find the suitable constraint conditions. And also the deviation of semi-full car model from actual full car model was investigated. According to the bifurcation analysis, the nonlinear critical speed are dependent with the constraint condition and car-body yaw motion should be free to achieve more accurate results. And the difference between semi-full and full car model was so small that KRRI's semi-full car model are valid as long as the stability is concerned.

  • PDF

Wave propagation in a generalized thermo elastic plate embedded in elastic medium

  • Ponnusamy, P.;Selvamani, R.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.13-26
    • /
    • 2012
  • In this paper, the wave propagation in a generalized thermo elastic plate embedded in an elastic medium (Winkler model) is studied based on the Lord-Schulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and foundation are obtained by the traction free boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the foundation parameter. A comparison of the results for the case with no thermal effects shows well agreement with those by the membrane theory.

A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates

  • Nguyen, Kien T.;Thai, Tai H.;Vo, Thuc P.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.91-120
    • /
    • 2015
  • A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates is presented in this paper. It contains only four unknowns, accounts for a hyperbolic distribution of transverse shear stress and satisfies the traction free boundary conditions. Equations of motion are derived from Hamilton's principle. The Navier-type and finite element solutions are derived for plate with simply-supported and various boundary conditions, respectively. Numerical examples are presented for functionally graded sandwich plates with homogeneous hardcore and softcore to verify the validity of the developed theory. It is observed that the present theory with four unknowns predicts the response accurately and efficiently.

3D Game Control using Gesture Recognition (동작 인식기를 이용한 3D 게임 제어)

  • Lee, Jae-Ho;Park, Chang-Joon;Lee, In-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1348-1353
    • /
    • 2006
  • 본 논문은 3 차원 게임 제어를 위한 인간의 동작인식에 대하여 기술하고 있다. 사용자의 편의성을 위하여 게임에 직관적으로 적용할 수 있는 인간의 동작들을 마커프리 모션 캡쳐 장비를 이용하여 취득하고, 이를 실시간으로 인식하는 동작 인식 시스템을 개발하였다. 또한, 개발된 동작인식기를 이용한 3차원 게임으로의 응용시스템의 접근 방식에 대하여 기술하고 있다. 개발된 동작 인식기는 LDA 방식에 기반을 둔 확률적 접근 방식으로 실시간으로 빠르고 정확하게 응용 시스템에 필요한 인간의 동작을 구별할 수 있도록 설계되었다. 개발된 시스템에서는 인식된 결과를 실시간으로 실제 어플리케이션에 전달하여 그 결과를 직접 사용자가 판단하여 다음 동작을 수행 할 수 있도록 되어 있다. 본 논문은, 이러한 실제 시스템의 개발을 통하여, 3 차원 인간 동작의 간단하고 유용한 활용 방법에 대한 해법을 제시하고 있다.

  • PDF