• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.027 seconds

Experimental Study on Damping of Side-by-Side Moored Vessels (병렬계류된 선박의 감쇠력에 관한 실험연구)

  • KIM JIN-HA;HONG SA-YOUNG;KIM YOUNC-SIK;KIM DEOK-SU;KIM YOUNG-SU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.160-165
    • /
    • 2004
  • Low-frequency damping characteristics of side-by-side moored LNG-FPSO and LNGC arc investigated through a series of free decay model tests in calm water and under wind load condition. It is shown that low frequency damping of LNGC changes dramatically, sway damping increases more than six times for 4m distance condition while it decreases by $30\%$ for 20m distance compared with a single LNGC case. Simulation using the experimental data enhances the results, which demonstrates the necessity of experimental low-frequency damping coefficients for simulation of side-by-side vessels motion behavior.

  • PDF

A NUMERICAL STUDY ON FLOWS IN A FUEL TANK WITH BAFFLES AND POROUS MEDIA TO REDUCE SLOSHING NOISE (연료탱크 슬로싱 소음 저감을 위한 배플 및 다공성 물질 설치에 따른 유동해석 연구)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.68-76
    • /
    • 2009
  • The sloshing tank causes the instability of the fluid flows and the fluctuation of the impact pressure by the liquid on the tank. These flow characteristics inside the sloshing tank can generate the uncomfortable sloshing noise. In the present study, a numerical analysis for the reduction of a fuel tank sloshing noise was performed. To simulate the flow characteristics in a sloshing tank with partially filled liquid, a VOF method was used for interfacial flows by applying a momentum source term for the sloshing motion in a non-inertial reference frame. This numerical method was verified by comparing its results with the available experimental data. For the reduction of the sloshing noise, the horizontal and vertical baffles and porous media inside a sloshing tank were considered and numerically analyzed in the present study. For various installations of these baffles and porous media, the characteristics of the liquid behavior in the sloshing tank were obtained along with the impact pressure on the wall and the height of the free surface along the wall. These basic results can be used for the design of the actual vehicular fuel tank with the reduced sloshing noise.

Dynamic Analysis of the Effect of Base Flexibility on a Spinning Disk Dynamics in a Small Size Disk Drive (소형 디스크 드라이브에 있어서 베이스 강성이 회전하는 원판에 미치는 동적영향 분석)

  • Lee, Sung-Jin;Hong, Soon-Kyo;Cheong, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.601-606
    • /
    • 2001
  • Free vibration analysis was performed for a spinning disk/spindle system mounted on a flexible baseplate. A simplified model was presented considering the effects of the baseplate flexibility on a disk/spindle system, and the equations of motion were derived by the assumed mode method and Lagrange's equation. From the results of the tree vibration analysis, the variations of the natural frequencies were investigated by changing rotating speed, baseplate thickness. They were attributed to the coupling between the flexible modes of the spinning disk/spindle system and the baseplate. This simplified model was used to predict the dynamic characteristics of a small size disk drive. The validity of the simplified model was verified by experiments and FE analysis.

  • PDF

Axisymmetric vibrations of layered cylindrical shells of variable thickness using spline function approximation

  • Viswanathan, K.K.;Kim, Kyung Su;Lee, Jang Hyun;Lee, Chang Hyun;Lee, Jae Beom
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.749-765
    • /
    • 2008
  • Free axisymmetric vibrations of layered cylindrical shells of variable thickness are studied using spline function approximation techniques. Three different types of thickness variations are considered namely linear, exponential and sinusoidal. The equations of axisymmetric motion of layered cylindrical shells, on the longitudinal and transverse displacement components are obtained using Love's first approximation theory. A system of coupled differential equations on displacement functions are obtained by assuming the displacements in a separable form. Then the displacements are approximated using Bickley-spline approximation. The vibrations of two-layered cylindrical shells, made up of several types of layered materials and different boundary conditions are considered. Parametric studies have been made on the variation of frequency parameter with respect to the relative layer thickness, length ratio and type of thickness variation parameter.

Harmonic Response Estimation Method on the Lévy Plate with Two Opposite Edges Having Free Boundary Conditions (마주보는 양단이 자유 경계조건을 갖는 Lévy 판의 조화 응답 해석)

  • Park, Nam-Gyu;Suh, Jung-Min;Jeon, Kyeong-Lak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.943-950
    • /
    • 2013
  • This paper discusses a harmonic response estimation method on the L$\acute{e}$vy plate with two opposite edges simply supported and the other two edges having free boundary conditions. Since the equation of motion of the plate is not self-adjoint, the modes are not orthogonal to each other on the domain. Noting that the L$\acute{e}$vy plate can be expressed using one term sinusoidal function that is orthogonal to other sinusoidal functions, this paper suggested the calculation method that is equivalent to finding a least square error minimization solution of the finite number of algebraic equations. Example problems subjected to a distributed area loading and a distributed line loading are defined and their solutions are provided. The solutions are compared to those of the commercial code, ANSYS. According to the verification results, it is expected that the suggested method will be useful to predict the forced response on the L$\acute{e}$vy plate with the distributed area or line loading conditions.

Free Vibration of a Rectangular Plate Partially in Contact with a Liquid at Both Sides (양면에서 부분적으로 유체와 접하는 사각평판의 고유진동)

  • Jeong, Kyeong-Hoon;Lee, Gyu-Mahn;Kim, Tae-Wan;Park, Keun-Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.123-130
    • /
    • 2008
  • An analytical method for the free vibration of a flexible rectangular plate in contact with water is developed by the Rayleigh-Ritz method. The plate clamped along the edges is partially contacted with water at both sides. It is assumed that the contained water is incompressible and inviscid. The wet mode shape of the plate is assumed as a combination of the dry mode shapes of a clamped beam. The liquid motion is described by using the liquid displacement potential and determined by using the compatibility conditions along the liquid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict excellently the fluid-coupled natural frequencies comparing with the finite element analysis result.

The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.711-726
    • /
    • 2017
  • In the present work, by considering the agglomeration effect of single-walled carbon nanotubes, free vibration characteristics of functionally graded (FG) nanocomposite sandwich plates resting on Pasternak foundation are presented. The volume fractions of randomly oriented agglomerated single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. To determine the effect of CNT agglomeration on the elastic properties of CNT-reinforced composites, a two-parameter micromechanical model of agglomeration is employed. In this research work, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented straight CNTs. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The benefit of using the considered power-law distribution is to illustrate and present useful results arising from symmetric and asymmetric profiles. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the laminated FG nanocomposite plates are investigated. It is shown that the natural frequencies of structure are seriously affected by the influence of CNTs agglomeration. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated plates.

Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM

  • Yaghoobi, Hessameddin;Valipour, Mohammad Sadegh;Fereidoon, Abdolhossein;Khoshnevisrad, Pooria
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.753-776
    • /
    • 2014
  • In this paper, nonlinear vibration and post-buckling analysis of beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to thermo-mechanical loading are studied. The thermo-mechanical material properties of the beams are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and to be temperature-dependent. The assumption of a small strain, moderate deformation is used. Based on Euler-Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this PDE problem which has quadratic and cubic nonlinearities is simplified into an ODE problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the influences of thermal effect, the effect of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogenity are presented for future references. Results show that the thermal loading has a significant effect on the vibration and post-buckling response of FG beams.

Numerical Simulation of Two-dimensional Sloshing Phenomena Using Marker-density Method (밀도함수법을 이용한 2차원 슬로싱 현상의 수치시뮬레이션)

  • Lee, Young-Gill;Jeong, Kwang-Leol;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.650-658
    • /
    • 2009
  • Two dimensional sloshing phenomena in regularly excited liquid cargo tank are numerically simulated with finite difference method. Navier-Stokes equations and continuity equation are computed for this study. The free-surface is determined every time step satisfying kinematic boundary condition using marker-density method. And the exciting force is treated by adding the acceleration of the tank to source term. The results are compared with other existing experiment results. And the comparison results show a good agreement. The sloshing phenomena in the tank of the 138K LNG carrier in sway motion is simulated with present calculation methods in low filling level. To find the relations between impact pressure and excitation condition, the calculations are performed in various amplitudes and periods. The averaged maximum pressures are compared each other.

Indications of Lateral Ankle Ligament Reconstruction with a Free Tendon and Associated Evidence (유리건을 이용한 족관절 외측 인대 재건술의 적응증과 근거)

  • Kang, Hwa-Jun;Jung, Hong-Geun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.22 no.3
    • /
    • pp.91-94
    • /
    • 2018
  • Ankle sprain is one of the most common musculoskeletal injuries. Although most ankle sprains respond well to conservative measures, chronic instability following an acute sprain has been reported to occur in 20% to 40% of patients. Some individuals are eventually indicated for a lateral ankle ligament reconstruction due to persistent ankle instability. More than 80 surgical procedures have been described to address lateral ankle stability. These range from direct repair of the anterior talofibular ligament (ATFL) and of the calcaneofibular ligament (CFL) to reconstructions based on the use of autograft or allograft tissues. However, the best surgical option remains debatable. The modified $Brostr{\ddot{o}}m$ procedure is most widely used for direct ligament repair, but not always possible because of the poor ATFL or CFL quality or deficiency of these ligaments, which prevents effective shortening imbrication. Furthermore, the importance of a CFL reconstruction has been emphasized recently. On the other hand, it is difficult to achieve an efficient CFL reconstruction during the $Brostr{\ddot{o}}m$ procedure. Others have reported that an anatomic reconstruction of injured ligaments restores the normal resistance to anterior translation and inversion without restricting subtalar or ankle motion, and as a result, anatomic reconstructions for lateral ankle instability utilizing an autograft or allograft tendon have gained popularity.