• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.037 seconds

Transient Surge Motion of A Turret Moored Body in Random Waves (불규칙파 중에 Turret 계류된 부유체의 천이운동해석)

  • 김동준
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 1991
  • A moored body in the sea is subjected to second-order wave forces as well as to linear oscillatory ones. The second-order farces contain slowly-varying components, of which the characteristic frequency can be as low as the natural frequency of horizontal motions of the moored body. As a consequence, the slowly-varying force can excite unexpectedly large horizontal excursion of the body, which may cause a serious damage on the mooring system. In design analysis of Turret-type mooring system which is one of the interesting mooring systems for a floating body. the slowly-varying drift forces and the transient motion of the system during weathervaning are very important. In this paper the slowly-varying drift forces were calculated by using the Quadratic Transfer Function with considering the second order free-wave contributions. Additionaly the transient surge motion of the moored body was simulated with including the roll of the time-memory effect. In this simulation the spring constant of the spread Turret mooring system is updated at every time step for considering the nonlinear effect.

  • PDF

Dorsal Neck Muscle Fatigue Affects Cervical Range of Motion and Proprioception in Adults with the Forward Head Posture

  • Yeo, Sang-Seok;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.5
    • /
    • pp.319-324
    • /
    • 2020
  • Purpose: This study was to investigate the effect of dorsal neck muscle fatigue on the cervical range of motion (CROM) and proprioception in adults with the forward head posture (FHP). Methods: Thirty pain-free subjects were enrolled in this study. All subjects were measured the forward head angle by taking the capture of the sagittal plane of their upper body to determine the FHP. Subjects were distributed into two groups: the FHP group (n=14) and Control group (n=16). All subjects were measured the CROM and the Head repositioning accuracy (HRA) for joint proprioception before and after inducing muscle fatigue of the dorsal neck. The CROM and HRA were measured in neck flexion, extension, right-left lateral flexion, and right-left rotation. Sorenson's test was used to induce muscle fatigue of the dorsal neck. Results: Total CROMs were significantly decreased after dorsal neck muscle fatigue in both groups (p<0.05). Total HRAs were significantly increased after dorsal neck muscle fatigue in the FHP group (p<0.05), but there were no significant differences in the control group (p>0.05). Total CROM changes were not significant differences between groups (p>0.05), but total HRA changes were significant differences between groups (p<0.05) except for right and left lateral flexion (p>0.05). Conclusion: Immediate CROM and proprioception reduction after the dorsal neck muscle fatigue were observed in adults with the FHP. Therefore, FHP can significantly affect the CROM and positioning consistency of cervical proprioception.

Breathing control with a visual signal for aperture maneuver with controlled breath (AMC)

  • Suh, Ye-lin;Yi, Byong-Yong;Ahn, Seung-Do;Klm, Jong-Hoon;Lee, Sang-Wook;Shin, Seong-Soo;Choi, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.140-143
    • /
    • 2004
  • To appropriately control or compensate breathing motion of targets in thorax or abdomen during radiotherapy is still demanding. Our idea is that a visual signal may help regulate patient's breathing pattern, by controlling its amplitude and cycle. The system involving breathing control with a visual signal for aperture maneuver with controlled breath (AMC) has been developed. A thermocouple is used to detect the temperature change due to patient's breathing. The system also consists of a mask, in which the thermocouple is installed, an operational amplifier, a converter, etc. Patients were instructed to control their respiration by breathing following the visuals signal, as watching a display that shows both patients' current breathing pattern and the signal. The patterns of patients' controlled breathing and the signals coincided well. Therefore, when AMC technique is applied, a target moves in the range that is 60 % less than the range of free breathing motion with the help of the system and so target margins can be reduced significantly. This study reveals that a visual signal is not only useful to control patient's breathing but also clinically effective.

  • PDF

Establishment of Correspondent points and Sampling Period Needed to Estimate Object Motion Parameters (운동물체의 파라미터 추정에 필요한 대응점과 샘플링주기의 설정)

  • Jung, Nam-Chae;Moon, Yong-Sun;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.26-35
    • /
    • 1997
  • This paper deals with establishing correspondent points of feature pints and sampling period when we estimate object motion parameters from image information of freely moving objects in space of gravity-free state. Replacing the inertial coordinate system with the camera coordinate system which is equipped within a space robot, it is investigated to be able to analyze a problem of correspond points from image information, and to obtain sequence of angular velocity $\omega$ which determine a motion of object by means of computer simulation. And if a sampling period ${\Delta}t$ is shortened, the relative errors of angular velocity are increased because the relative errors against moving distance of feature points are increased by quantization. In reverse, if a sampling period ${\Delta}t$ is lengthened too much, the relative error are likewise increased because a sampling period is long for angular velocity to be approximated, and we confirmed the precision that grows according to ascending of resolution.

  • PDF

Development of Cleanroom Garment Design in Semiconductor Industrial Environment (반도체 산업환경에서의 방진복 디자인의 개발)

  • 이윤정;정찬주;정재은
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.2
    • /
    • pp.337-348
    • /
    • 2002
  • Based upon literature survey and questionnaire survey, this research tries to develop four new Cleanroom Garment in semiconductor industrial environment. The designs emphasize to minimize workers disconmfort so that they can not only cover human body fully but also reduce dust as much as possible during work hour in clean room. The new designs characteristics and results from both function test and dust emission test are as follows: 1. In order to reduce dust-emission, we develop new designs with hood, kimono sleeve, and back zipper. The designs with hood face positive test results in term of motion suitability and dust-omission. The design with seam in front, in particular, is effective to control dust-emission. 2. For the purpose of reducing dust-emission, we also emphasize to minimize ease of dust-proof wear, with reference to previous research and clothing experiment. The experiment participants report that the new wears are not so comfortable as existing ones, but they accept the new wears positive as effective in reducing dust-emission owing to reduced ease of Cleanroom Garment and sleeves. 3. A1so to reduce dust-emission in inner wear, we put inner wear in both Cleanroom Garments and inner wear, resulting to remove discomfort of wearers when changing clothes and of tight waist due to inner-trousers. 4. We develop new designs with elastic bands in both waist through the side lines and with velcro only at the back side. To remove twist in front contributes to reduce emission arising out of friction, also to free the appearance minding woman workers from worrying about exposed stomach. The new designs need to be accepted as a valuable alternative of Cleanroom Garment, in that they are highly effective to reduce dust-emission, which is the most important factor in the wear, in spite of some drawbacks in terms of motion-suitability, ease and appearance as shown in wearing test.

Effects of Hold-Relax and Active Range of Motion on Thoracic Spine Mobility

  • Kondratek, Melodie;Pepin, Marie-Eve;Krauss, John;Preston, Danelle
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.3 no.2
    • /
    • pp.413-421
    • /
    • 2012
  • Few studies address the use of manual muscle stretching to improve spinal active range of motion(AROM). There is evidence that' Hold-Relax'(HR) is effective for increasing ROM in the extremities, which leads the researchers to anticipate similar benefits in the spine. The purpose of this study is to investigate the effects of HR(trunk flexors) and active thoracic flexion and extension on thoracic mobility, specifically flexion and extension in healthy individuals. A convenience sample of 30 physical therapy students(22-38 years) were randomly assigned to intervention sequence 'A-B' or 'B-A', with at least 7 days between interventions. Intervention' A' consisted of HR of the ventral trunk musculature while 'B' consisted of thoracic flexion-extension AROM. Thoracic flexion and extension AROM were measured before and after each intervention using the double inclinometer method. Paired t-tests were used to compare AROM pre and post-intervention for both groups, and to test for carry-over and learning effects. There was a statistically significant increase(mean=$3^{\circ}$ ; p=0.006) in thoracic extension following HR of the trunk flexors. There were no significant changes in thoracic flexion following HR, or in flexion or extension following the AROM intervention. No carryover or learning effects were identified. HR may be an effective tool for improving AROM in the thoracic spine in pain free individuals. Further investigation is warranted with symptomatic populations and to define the minimal clinical difference(MCD) for thoracic spine mobility.

ON ANALYTICAL SOLUTION OF NON LINEAR ROLL EQUATION OF SHIPS

  • Tata S. Rao;Shoji Kuniaki;Mita Shigeo;Minami Kiyokazu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.134-143
    • /
    • 2006
  • Out of all types of motions the critical motions leading to capsize is roll. The dynamic amplification in case of roll motion may be large for ships as roll natural frequency generally falls within the frequency range of wave energy spectrum typical used for estimation of motion spectrum. Roll motion is highly non-linear in nature. Den are various representations of non-linear damping and restoring available in literature. In this paper an uncoupled non-linear roll equations with three representation of damping and cubic restoring term is solved using a perturbation technique. Damping moment representations are linear plus quadratic velocity damping, angle dependant damping and linear plus cubic velocity dependant damping. Numerical value of linear damping coefficient is almost same for all types but non-linear damping is different. Linear and non-linear damping coefficients are obtained form free roll decay tests. External rolling moment is assumed as deterministic with sinusoidal form. Maximum roll amplitude of non-linear roll equation with various representations of damping is calculated using analytical procedure and compared with experimental results, which are obtained form forced tests in regular waves by varying frequency with three wave heights. Experiments indicate influence of non-linearity at resonance frequency. Both experiment and analytical results indicates increase in maximum roll amplitude with wave slope at resonance. Analytical results are compared with experiment results which indicate maximum roll amplitude analytically obtained with angle dependent and cubic velocity damping are equal and difference from experiments with these damping are less compared to non-linear equation with quadratic velocity damping.

  • PDF

Utilizing Advanced Pad Conditioning and Pad Motion in WCMP

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.171-175
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics and metal, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter level dielectrics and metal. Especially, defects like (micro-scratch) lead to severe circuit failure, and affects yield. Current conditioning method - bladder type, orbital pad motion - usually provides unsuitable pad profile during ex-situ conditioning near the end of pad life. Since much of the pad wear occurs by the mechanism of bladder tripe conditioning and its orbital motion without rotation, we need to implement new ex-situ conditioner which can prevent abnormal regional force on pad caused by bladder-type and also need to rotate the pad during conditioning. Another important study of ADPC is related to the orbital scratch of which source is assumed as diamond grit dropped from the strip during ex-situ conditioning. Scratch from diamond grit damaged wafer severely so usual1y scraped. Figure 1 shows the typical shape of scratch damaged from diamond. We suspected that intensive forces to the edge area of bladder type stripper accelerated the drop of Diamond grit during conditioning, so new designed Flat stripper was introduced.

  • PDF

Statistical models from weigh-in-motion data

  • Chan, Tommy H.T.;Miao, T.J.;Ashebo, Demeke B.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.85-110
    • /
    • 2005
  • This paper aims at formulating various statistical models for the study of a ten year Weigh-in-Motion (WIM) data collected from various WIM stations in Hong Kong. In order to study the bridge live load model it is important to determine the mathematical distributions of different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc. Each of the above parameters is analyzed by various stochastic processes in order to obtain the mathematical distributions and the Maximum Likelihood Estimation (MLE) method is adopted to calculate the statistical parameters, expected values and standard deviations from the given samples of data. The Kolmogorov-Smirnov (K-S) method of approach is used to check the suitability of the statistical model selected for the particular parameter and the Monte Carlo method is used to simulate the distributions of maximum value stochastic processes of a series of given stochastic processes. Using the statistical analysis approach the maximum value of gross vehicle weight and axle weight in bridge design life has been determined and the distribution functions of these parameters are obtained under both free-flowing traffic and dense traffic status. The maximum value of bending moments and shears for wide range of simple spans are obtained by extrapolation. It has been observed that the obtained maximum values of the gross vehicle weight and axle weight from this study are very close to their legal limitations of Hong Kong which are 42 tonnes for gross weight and 10 tonnes for axle weight.

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.