• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.029 seconds

Ceramic-Ceramic Wear of Zirconia/Alumina Composites for the Application of Total Hip Replacement (인공 고관절 골두용 세라믹 복합재료에 대한 세라믹-세라믹 접촉 마멸 특성 분석)

  • Lee Kwon-Yong;Kim Hwan;Kim Dae-Jun;Lee Myong-Hyon;Seo Won-Seon
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.216-220
    • /
    • 2005
  • The sliding wear behaviors of three different compositions of novel low temperature degradation-free zirconia/alumina (LTD-free Z/A) composites were examined in a ceramic-ceramic contact pair. The wear tests were performed by using a pin-on-disk type wear tester in a linear reciprocal sliding motion with a line contact in both dry and bovine serum lubricated conditions at room temperature. From the results of dry sliding wear tests, Z/A#1((5.3Y, 4.6Nb)-TZP/80 $vol\%Al_2O_3$) showed the best wear resistance among three kinds of LTD-free Z/A composites. For the bovine serum lubricated sliding wear tests, wear was too little to be measured for all kinds of Z/A composites. These novel LTD-free Z/A composites having excellent wear resistance demonstrated a potential as the alternative materials for the ceramic-ceramic contact pairs of femoral head and acetabular liner in total hip replacement.

A Study on the Change of Free Surface Vortex according to Intake Conditions in the Pump Sump (펌프 섬프장 흡입 조건에 따른 자유표면 보텍스 변동에 관한 연구)

  • Park, Young-Kyu;Li, Kui-Ming;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.74-79
    • /
    • 2011
  • In this study the change of free surface vortex is represented at different times according to height of water and with or without curtain wall installation. The air volume fraction is investigated at each condition of water level and the influence about creation of vortex is analyzed. The height of sump intake is taken as 100mm and the water level is divided into 5 steps. The sump model is the TSJ model and the curtain wall is applied by HI standard of America. The results shows that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5% and the vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. In the higher water level, less air is absorbed into the intake pipe. After curtain wall installation, the suction rate of the air volume fraction is decreased by 6.7%. The result of the vortex motion according to time, works on a cycle.

Evaluation of Seismic Loading of Pile Foundation Structure Considering Soil-foundation-structure Interaction (지반-기초-구조물 상호작용을 고려한 말뚝 기초 구조물에서의 지진 하중 평가)

  • Yoo, Min Taek;Ha, Jeong Gon;Jo, Seong-Bae;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • In this study, a series of dynamic centrifuge tests were performed for a soil-foundation-structural interaction system in dry sand with various embedded depths and superstructure conditions. Sinusoidal wave, sweep wave and real earthquake were used as input motion with various input acceleration and frequencies. Based on the results, a natural period and an earthquake load for soil-structure interaction system were evaluated by comparing the free-field and foundation accelerations. The natural period of free field is longer than that of the soil-foundation-structure system. In addition, it is confirmed that the earthquake load for soil-foundation-structure system is smaller than that of free-field in short period region. In contrast, the earthquake load for soil-foundation-structure interaction system is larger than that of free-field in long period region. Therefore, the current seismic design method, applying seismic loading of free-field to foundation, could overly underestimate seismic load and cause unsafe design for long period structures, such as high-rise buildings.

IMPROVEMENT OF MPS METHOD IN SIMULATING VIOLENT FREE-SURFACE MOTION AND PREDICTING IMPACT-LOADS (유체 충격 하중 예측을 위한 MPS법의 개량)

  • Hwang, S.C.;Lee, B.H.;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.71-80
    • /
    • 2010
  • The violent free-surface motions and the corresponding impact loads are numerically simulated by using the Moving Particle Semi-implicit (MPS) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flows. In the original MPS method, there were several shortcoming including non-optimal source term, gradient and collision models, and search of free-surface particles, which led to less-accurate fluid motions and non-physical pressure fluctuations. In the present study, how those defects can be remedied is illustrated by step-by-step improvements in respective processes of the revised MPS method. The improvement of each step is explained and numerically demonstrated. The numerical results are also compared with the experimental results of Martin and Moyce (1952) for dam-breaking problem. The current numerical results for violent free-surface motions and impact pressures are in good agreement with their experimental data.

An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper an efficient and simple refined shear deformation theory is presented for the free vibration of Functionally Graded Plates Under Various Boundary Conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived using Hamilton's principle. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, and side-to-thickness ratio on the free vibration of FGM plates are presented.

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF

Development of cryogenic free-piston reciprocating expander utilizing phase controller

  • Cha, Jeongmin;Park, Jiho;Kim, Kyungjoong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.42-47
    • /
    • 2016
  • A free-piston reciprocating expander is a device which operates without any mechanical linkage to a stationary part. Since the motion of the floating piston is only controlled by the pressure difference at two ends of the piston, this kind of expander may indispensably require a sophisticated active control system equipped with multiple valves and reservoirs. In this paper, we have suggested a novel design that can further reduce complexity of the previously developed cryogenic free-piston expander configuration. It is a simple replacement of both multiple valves and reservoirs by a combination of an orifice valve and a reservoir. The functional characteristic of the integrated orifice-reservoir configuration is similar to that of a phase controller applied in a pulse tube refrigerator so that we designate the one as a phase controller. Depending on the orifice valve size in the phase controller, the different PV work which affects the expander performance is generated. The numerical model of this unique free-piston reciprocating expander utilizing a phase controller is established to understand and analyze quantitatively the performance variation of the expander under different valve timing and orifice valve size. The room temperature experiments are carried out to examine the performance of this newly developed cryogenic expander.

Free vibration responses of nonlinear FG-CNT distribution in a polymer matrix

  • Zerrouki, Rachid;Hamidi, Ahmed;Tlidji, Youcef;Karas, Abdelkader;Zidour, Mohamed;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • The object of this paper is to investigate the free vibration behavior under the effect of carbon nanotube distribution in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) by using higher-order shear deformation theories. In this work, we present a novel distribution method for carbon nanotubes in the polymer matrix by using a new exponential power law distribution of carbon nanotube volume fraction. It is assumed that the SWCNTs are aligned along the beam axial direction and the distribution of the SWCNTs may vary through the thickness of the beam with different patterns of reinforcement. The rule of mixtures is used in order to obtain material properties of the CNTRC beams. Hamilton's principle is used in deriving the equations of motion. The validity of the free Vibration results is examined by comparing them with those of the known data in the literature. The results that obtained indicate that the carbon nanotube volume fraction distribution play a very important role on the free vibrations characteristics of the CNTRC beam.

A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D)

  • Belkhodja, Y.;Ouinas, D.;Fekirini, H.;Olay, J.A. Vina;Achour, B.;Touahmia, M.;Boukendakdji, M.
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.395-420
    • /
    • 2022
  • A new hybrid quasi-3D and 2D high-order shear deformation theory is studied in this mathematical formulation, for an investigation of the bending, free vibrations and buckling influences on a functionally graded material plate. The theoretical formulation has been begun by a displacement field of five unknowns, governing the transverse displacement across the thickness of the plate by bending, shearing and stretching. The transverse shear deformation effect has been taken into consideration, satisfying the stress-free boundary conditions, especially on plate free surfaces as parabolic variation through its thickness. Thus, the mechanical properties of the functionally graded plate vary across the plate thickness, following three distributions forms: the power law, exponential form and the Mori-Tanaka scheme. The mechanical properties are used to develop the equations of motion, obtained from the Hamilton principle, and solved by applying the Navier-type solution for simply supported boundary conditions. The results obtained are compared with other solutions of 2D, 3D and quasi-3D plate theories have been found in the literature.

Reconstruction of Postburn Scar Contracture of the Sole Using the Medialis Pedis Free Flap (내측 족부 유리 피판을 이용한 발바닥 화상 후 구축 반흔의 재건)

  • Kim, Jae Hyun;Choi, Jong Min;Chung, Chan Min;Park, Myong Chul
    • Journal of the Korean Burn Society
    • /
    • v.24 no.2
    • /
    • pp.74-76
    • /
    • 2021
  • Postburn scar contracture of sole can cause musculoskeletal deformity, restricted range of motion, and decreased quality of life. It is very important to exhibit similar characteristics of the sole when reconstructing the sole because it has to resist shearing force and weight bearing. In this case, we performed medialis pedis free flap for the postburn scar contracture of the sole and the flap survived without complication. The patient satisfied with functional and aesthetic outcomes. Medialis pedis free flap, which is harvested adjacent to the sole, can show similar characteristic of the sole and maintain adequate contour. Moreover, this flap can be harvested without sacrifice of major vessel or nerve. Due to these advantages, medialis pedis free flap can be an ideal option for the reconstruction of the sole.