• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.027 seconds

이원자기체군의 감쇠진동에 관한 연구

  • Kim, Su-Seon
    • The Science & Technology
    • /
    • v.8 no.12 s.79
    • /
    • pp.61-64
    • /
    • 1975
  • An expression for the vibrational frequency of diatomic molecular is obtained by using molecular gas temperature T and molecular gas mean-free path λ. And when λ/T →2.59, beca use of the damped vibration, a diatomic molecular gas is Impeded about transportation. If transfortation is not attained with this condition, rectilinear motion of a diatomic molecular gas can't maintain for the equilibrium state.

  • PDF

Arterial or venous free flaps for volar tissue defects of the proximal interphalangeal joint: A comparison of surgical outcomes

  • Choi, Min Suk;Roh, Si Young;Koh, Sung Hoon;Kim, Jin Soo;Lee, Dong Chul;Lee, Kyung Jin;Hong, Min Ki
    • Archives of Plastic Surgery
    • /
    • v.47 no.5
    • /
    • pp.451-459
    • /
    • 2020
  • Background For volar soft tissue defects of the proximal interphalangeal (PIP) joint, free flaps are technically challenging, but have more esthetic and functional advantages than local or distant flaps. In this study, we compared the long-term surgical outcomes of arterial (hypothenar, thenar, or second toe plantar) and venous free flaps for volar defects of the PIP joint. Methods This was a single-center retrospective review of free flap coverage of volar defects between the distal interphalangeal and metacarpophalangeal joint from July 2010 to August 2019. Patients with severe crush injuries (degloving, tendon or bone defects, or comminuted/intra-articular fractures), thumb injuries, multiple-joint and finger injuries, dorsal soft tissue defects, and defects >6 cm in length were excluded from the study, as were those lost to follow-up within 6 months. Thirteen patients received arterial (hypothenar, thenar, or second toe plantar) free flaps and 12 received venous free flaps. Patients' age, follow-up period, PIP joint active range of motion (ROM), extension lag, grip-strength ratio of the injured to the uninjured hand, and Quick Disabilities of Arm, Shoulder & Hand (QuickDASH) score were compared between the groups. Results Arterial free flaps showed significantly higher PIP joint active ROM (P=0.043) and lower extension lag (P =0.035) than venous free flaps. The differences in flexion, grip strength, and QuickDASH scores were not statistically significant. Conclusions The surgical outcomes of arterial free flaps were superior to those of venous free flaps for volar defects of the PIP joint.

An Constraint Based Approach to Planning Collision-Free Navigation of Multi-AUVs with Environmental Disturbances (환경 외란을 고려한 다중 자율잠수정의 제한적 기법 기반 주행 계획기)

  • Ji, Sang-Hoon;Ko, Woo-Hyun;Jung, Yeun-Soo;Lee, Beom-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.53-65
    • /
    • 2008
  • This paper proposes the qualitative method for planning the operation of multi-AUVs with environmental disturbances, which is considered to be a very difficult task. In this paper we use an extension collision map as a collision free motion planner. The tool was originally developed for the multiple ground vehicles with no internal/external disturbance. In order to apply the method to a water environment where there are tides and waves, and currents, we analyze the path deviation error of AUVs caused by external disturbances. And we calculate safety margin for the collision avoidance on the extension collision map. Finally, the simulation result proves that the suggested method in this paper make multi-AUVs navigate to the goal point effectively with no collision among them.

Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions

  • Karami, Behrouz;Shahsavari, Davood;Ordookhani, Ali;Gheisari, Parastoo;Li, Li;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.689-702
    • /
    • 2020
  • The current study deals with the size-dependent free vibration analysis of graphene nanoplatelets (GNPs) reinforced polymer nanocomposite plates resting on Pasternak elastic foundation containing different boundary conditions. Based on a four variable refined shear deformation plate theory, which considers shear deformation effect, in conjunction with the Eringen nonlocal elasticity theory, which contains size-dependency inside nanostructures, the equations of motion are established through Hamilton's principle. Moreover, the effective material properties are estimated via the Halpin-Tsai model as well as the rule of mixture. Galerkin's mathematical formulation is utilized to solve the equations of motion for the vibrational problem with different boundary conditions. Parametrical examples demonstrate the influences of nonlocal parameter, total number of layers, weight fraction and geometry of GNPs, elastic foundation parameter, and boundary conditions on the frequency characteristic of the GNPs reinforced nanoplates in detail.

A NUMERICAL ANALYSIS OF THE SLOSHING IN A TANK WITH PLATE/POROUS BAFFLES (판형 및 다공형 배플을 포함한 탱크 내 슬로싱에 대한 유동해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.215-222
    • /
    • 2009
  • In the present study, a numerical analysis on the sloshing in a tank with the harmonic motion was investigated. A VOF method was used for two-phase flows inside the sloshing tank and a source term of the momentum equation was applied for the harmonic motion. This numerical method was verified by comparing its results with the available experimental data. The sloshing in a tank causes the instability of the fluid flows and the fluctuation of the impact pressure on the tank. By these phenomena of the tank sloshing, the sloshing problems such as the failure and the noise of system can be generated. For the reduction of these sloshing problems, the various baffles such as the horizontal/vertical plate baffles and the porous baffles inside the tank are installed. With the installations of these baffles, the characteristics of the liquid behavior in the sloshing tank, the impact pressure on the wall, the amplitude of the free surface near the wall and the sloshing noise were numerically analyzed.

  • PDF

A Study on Atomization Characteristics of Gasoline Impinging Spray Using Glow plug (글로우플러그를 이용한 충돌분무의 미립화특성에 관한 연구)

  • 문영호;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.54-61
    • /
    • 2001
  • It is reported that during the cold starting, especially in gasoline engine, the engine response and the effect of HC emission can be improved by prompting atomization and reducing the quantity of fuel adhered to the range of injector tip, inlet port, and inlet valve. The purposes of this study are to promote atomization of fuel before air-fuel mixture in the inlet port. In order to achieve its goal, the glow plug is to evaluate the feasibility of for the early fuel evaporator and the spray behavior characteristics of gasoline, injected on the surface of glow plug with room temperature(2$0^{\circ}C$) and high temperature(25$0^{\circ}C$) is to examine. Particle motion analysis system(PMAS) was used to measure the SMD and the dropsize distribution of impinging spray and free spray. The results of this experiment, evaporation rate of impinging spray was higher than that of free spray, and the higher evaporation rate win, the smaller peak dropsize was. Especially, during early spray SMD of impinging spray was still smaller than that of fee spray.

  • PDF

Free In-plane Vibration of a Clamped Circular Plate (고정된 원형 플레이트의 평면내 자유진동)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.836-839
    • /
    • 2005
  • The in-plane vibration response of a clamped circular plate should be predicted in many applications. Up to now, papers on the in-plane vibration of rectangular plate are published. However, analytical derivation on the in-plane vibration of the clamped circular plate is not carried out. Therefore, the in-plane vibration of the clamped circular plate is the concern of this paper. In order to derive the equations of motion for the clamped circular plate in the cylindrical coordinate, the kinetic energy and potential energy for the in-plane behavior are obtained by us ing the stress-strain-displacement expressions. Application of Hamilton's principle leads to two sets of differential equations. These displacement equations were highly coupled. It is possible to obtain a simpler set of equations by introducing Helmholtz decomposition. Substituting them into the coupled differential equations, we obtain the uncoupled equations of motion. In order to solve them, we assume that the solutions are harmonic. Then, they lead to the wave equations. Using the separation of variable, we obtain the general solutions for the equations. Based on the solutions, the displacements for r and $\theta$ direction are assumed. Finally we obtain the frequency equation for the clamped circular plate by the application of boundary conditions. The derived equation is compared with the finite element analysis for validation by using the some numerical examples.

  • PDF

Optimum time history analysis of SDOF structures using free scale of Haar wavelet

  • Mahdavi, S.H.;Shojaee, S.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • In the recent decade, practical of wavelet technique is being utilized in various domain of science. Particularly, engineers are interested to the wavelet solution method in the time series analysis. Fundamentally, seismic responses of structures against time history loading such as an earthquake, illustrates optimum capability of systems. In this paper, a procedure using particularly discrete Haar wavelet basis functions is introduced, to solve dynamic equation of motion. In the proposed approach, a straightforward formulation in a fluent manner is derived from the approximation of the displacements. For this purpose, Haar operational matrix is derived and applied in the dynamic analysis. It's free-scaled matrix converts differential equation of motion to the algebraic equations. It is shown that accuracy of dynamic responses relies on, access of load in the first step, before piecewise analysis added to the technique of equation solver in the last step for large scale of wavelet. To demonstrate the effectiveness of this scheme, improved formulations are extended to the linear and nonlinear structural dynamic analysis. The validity and effectiveness of the developed method is verified with three examples. The results were compared with those from the numerical methods such as Duhamel integration, Runge-Kutta and Wilson-${\theta}$ method.

Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory

  • Arefi, Mohammad;Bidgoli, Elyas Mohammad-Rezaei;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.27-40
    • /
    • 2018
  • The governing equations of motion are derived for analysis of a sandwich microbeam in this paper. The sandwich microbeam is including an elastic micro-core and two piezoelectric micro-face-sheets. The microbeam is subjected to transverse loads and two-dimensional electric potential. Higher-order sinusoidal shear deformation beam theory is used for description of displacement field. To account size dependency in governing equations of motion, strain gradient theory is used to mention higher-order stress and strains. An analytical approach for simply-supported sandwich microbeam with short-circuited electric potential is proposed. The numerical results indicate that various types of parameters such as foundation and material length scales have significant effects on the free vibration responses and dynamic results. Investigation on the influence of material length scales indicates that increase of both dimensionless material length scale parameters leads to significant changes of vibration and dynamic responses of microbeam.

Analysis of Velocity Potential around Pulsating Bubble near Free or Rigid Surfaces Based on Image Method (이미지 방법을 이용한 자유 및 강체 표면 옆의 맥동하는 버블 주위 속도 포텐셜 해석)

  • Lee, Sangryun;Choi, Gulgi;Kim, Jongchul;Ryu, Seunghwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • An analytical method for predicting the velocity potential around a pulsating bubble close to a free or rigid wall was established using an image method. Because the velocity potential should satisfy two boundary conditions at the bubble surface and rigid wall, we investigated the velocity in the normal direction at the two boundaries by adding the image bubbles. The potential was analyzed by decomposing the bubble motion as two independent motions, pulsation and translation, and we found that when the number of image bubbles was greater than ten, the two boundary conditions were satisfied for the translation term. By adding many image bubbles after the approximation of the pulsation term, we also confirmed that the boundary condition at the wall was satisfied.