• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.022 seconds

Experimental and numerical study on motion responses of modular floating structures with connectors in waves

  • Dong-Hee Choi;Jae-Min Jeon;Min-Ju Maeng;Jeong-Hyeon Kim;Bo Woo Nam
    • Ocean Systems Engineering
    • /
    • v.14 no.3
    • /
    • pp.277-299
    • /
    • 2024
  • In this study, the wave-induced motion responses of modular floating structures (MFS) was investigated through a series of experiments in a two-dimensional wave tank. A 1:63 scale model test was conducted using a 1-by-2 modular floating structure consisting of two modules and connectors. Two different types of connectors were considered: a pitch-free hinge and rigid connector. The numerical analysis was performed based on the higher-order boundary element method (HOBEM) and wave Green function with potential flow theory. First, the heave and pitch RAOs of the modules from the regular wave tests were directly compared with numerical analysis results. Next, the motion spectra and their statistical values from the irregular wave tests were compared with the numerical analysis results. The study revealed that the sheltering effect of the weather side module led to a reduction in motion of the lee side module. The numerical analysis showed good agreement with the experimental data, demonstrating the validity of the numerical method. Additionally, the rigid connector, which strongly constrain all six degrees of freedom, significantly reduce pitch motion, making the modules behave as a single rigid body.

Continuous Half Passive Motion under Distracted External Fixation for the Treatment of Distal Tibial Pilon Fractures (신연 외고정 및 지속적 반수동 운동을 이용한 경골 원위부 필론 골절의 치료)

  • Bae, Su-Young;Chung, Hyung-Jin;Shin, Yong-Woon;Park, Jae-Gu
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.2
    • /
    • pp.146-150
    • /
    • 2010
  • Purpose: Pilon fracture has several serious complications such as joint stiffness, arthrosis and delayed angular deformity. We report short-term results of new treatment modality using distracted dynamic external fixators and early controlled ankle motion. Materials and Methods: Eight cases of severe pilon fractures for which we tried small plate fixation and additional distracted dynamic external fixators from July 2007 to June 2009 were included. Half passive continuous ankle joint motion was allowed under free hinged ring fixators after the operation. The external fixators were removed after two or three months from the surgery. We investigated joint space by radiograph, joint pain, range of motion, patient's satisfaction of treatment protocol. Results: Joints were distracted when external fixators were applied and mean 28% of space loss developed after removal of external fixators. In most of cases, satisfactory alignments were maintained. Regarding range of joint motion, mean dorsiflexion angle was 15 degrees and mean plantarflexion angle was 32 degree in the condition of wearing external fixators. There was mean 8% reduction of range of motion but no further progression of ankle stiffness after removal of external fixators. Dorsiflexion was not improved after that, but plantarflexion angle was improved 10% even after removal of external fixators. Patients were generally in compliance with the treatment protocols with high level of satisfaction. Conclusion: We got good results with distracted dynamic external fixators and early continuous half-passive joint motion for pilon fractures in terms of joint pain and range of motion. Therefore we suggest this new protocol as an alternative modality for severe pilon fractures.

Experimental Study on the Eddy Making Damping Effect at the Roll Motion of a Rectangular Barge (사각형 바지선의 횡동요 와류 감쇠에 대한 실험적 연구)

  • Jung, Kwang-Hyo;Suh, Sung-Bu;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.267-278
    • /
    • 2007
  • This experimental study investigated on the eddy making effect on the roll motion of a rectangular barge in a two-dimensional wave tank. The structure was used to simulate a simplified rectangular barge in the beam sea condition. The structure with a draft one half of its height was hinged at the center of gravity and free to roll by waves. The rectangular barge was tested with regular waves with a range of wave periods that are shorter, equal to, and longer than its roll natural period. Particle image velocimetry (PIV) was employed to obtain the velocity field in the vicinity of the structure. The coupled interactions between the incident wave and the barge were demonstrated by examining the vortical flow fields to elucidate the eddy making effect during the roll motion. For incoming wave with a wave period same as the roll natural period, the barge roll motion was reduced by the eddy making damping effect. At the wave period shorter than the roll natural period, the structure roll motion was slightly reduced by the vertical flow around the barge. However, at the wave period longer than the roll natural period, the eddy making effect due to flow separation at structure corners indeed amplifies the roll motion. This indicates that not only can the eddy making effect damp out the roll motion, it can also increase the roll motion.

Motion and Sloshing Analysis for New Concept of Offshore Storage Unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2002
  • A New concept for the LNG-FPSO ship, with moonpool and bilge step in bottom, is proposed. This concept is investigated with regard to motion reduction and sloshing phenomena of the cargo and operation tanks. The principal dimensions of the ship are $L\timesb B\times D\times t(design)=270.0\times51.0\times32.32\times13.7(m)$, with a total cargo capacity of 161KT; a 98% loading condition is considered for this study. The moonpools and rectangular step at the bilge have been designed for the purpose of decreasing the motion within the tank. For the motion analysis, linearized three-dimensional diffraction theory, with the simplified boundary condition was used. The six-degree of freedom coupled motion responses were calculated for the LNG-FPSO ship. Viscous effects on the roll motion responses of a vessel were taken into account in this calculation program, using an empirical formula suggested by Himeno(1981). The case study for the moonpool size has been conducted using theoretical estimation and the experimental method. For the optimization of the moonpool size and effect of the bilge step, 9 cases of its size, both with and without bilge step, were involved in the study. no motion responses, especially roll motion, for the designed LNG-FPSO ships are much lower than those of other drill ships and shuttle tankers. The limit criterions are satisfied. To check the cargo tank and operation tank sizes, we performed a sloshing analysis in the irregular waves which focuses on the pressure distribution on the tank wall and the time history of pressure and free surface for No.2 and 5 tanks of LNG-FPSO with chamfers. Finally, optimum tank sire was estimated.

  • PDF

Experimental Investigation of the Motion Responses of a Moored Twin-Barge Model in Regular Waves in a Square Tank

  • Nguyen, Van Minh;Jeon, Myung-Jun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.127-136
    • /
    • 2018
  • The motion response of floating structures is of significant concern in marine engineering. Floating structures can be disturbed by waves, winds, and currents that create undesirable motions of the vessel, therefore causing challenges to its operation. For a floating structure, mooring lines are provided in order to maintain its position; these should also produce a restoring force when the vessel is displaced. Therefore, it is important to investigate the tension of mooring lines and the motion responses of a twin barge when moored to guarantee the safety of the barge during its operation. It is essential to precisely identify the characteristics of the motion responses of a moored barge under different loading conditions. In this study, the motion responses of a moored twin barge were measured in regular waves of seven different wave directions. The experiment was performed with regular waves with different wavelengths and wave directions in order to estimate the twin-barge motions and the tension of the mooring line. In addition, the motion components of roll, pitch, and heave are completely free. In contrast, the surge, sway, and yaw components are fixed. In the succeeding step, a time-domain analysis is carried out in order to obtain the responses of the structure when moored. As a result, the Response Amplitude Operator (RAO) motion value was estimated for different wave directions. The results of the experiment show that the motion components of the twin barge have a significant effect on the tension of the mooring lines.

Use of the Tenocutaneous Free Flap In Hand Reconstruction (유리 건 피판을 이용한 수부 재건술)

  • Chung, Duke-Whan;Han, Chung-Soo;Kim, Ki-Bong;Yi, Jin-Woong
    • Archives of Reconstructive Microsurgery
    • /
    • v.10 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • Purpose : This describes our experience with a tenocutaneous free flap from the dorsum of the foot or radial forearm to reconstruct the dorsal skin and extensor tendons of the hand. Material and Methods : Between february 1987 and July 1998, we treated 9 patients with composite tissue loss on the dorsal hand caused by crushing injury. Nine men had an average age of 26.4 years(range, $19{\sim}47$). We treated 5 patients with the free dorsalis pedis flap including the extensor tendons and the superficial peroneal nerve and 4 patients with reverse forearm flap including the brachioradialis tendon and/or superficial radial nerve. Flap size was average 4.4(3,2cm. Evaluation of the results was based on the survived flap rate, the recovery rates for range of motion of the metacarpophalageal joints in the operated fingers. two-point discrimination. Results : All flaps were well vascularized and survived completely. Recovery rates for range of motion of the metacarpophalageal joints in operated fingers range from $78%{\sim}99%$(average, 90%). Two-point discrimination of the transferred flaps in 5 patients average $20{\pm}3.5mm$. Conclusion : The advantages of this procedure are mass action reconstruction with tendon, one-stage operation, faster healing with less adhesion formation, and early mobilization.

  • PDF

Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory

  • Kaghazian, Abbas;Hajnayeb, Ali;Foruzande, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.617-624
    • /
    • 2017
  • Piezoelectric nanobeams are used in several nano electromechanical systems. The first step in designing these systems is conducting a vibration analysis. In this research, the free vibration of a piezoelectric nanobeam is analyzed by using the nonlocal elasticity theory. The nanobeam is modeled based on Euler-Bernoulli beam theory. Hamilton's principle is used to derive the equations of motion and also the boundary conditions of the system. The obtained equations of motion are solved by using both Galerkin and the Differential Quadrature (DQ) methods. The clamped-clamped and cantilever boundary conditions are analyzed and the effects of the applied voltage and nonlocal parameter on the natural frequencies and mode shapes are studied. The results show the success of Galerkin method in determining the natural frequencies. The results also show the influence of the nonlocal parameter on the natural frequencies. Increasing a positive voltage decreases the natural frequencies, while increasing a negative voltage increases them. It is also concluded that for the clamped parts of the beam and also other parts that encounter higher values of stress during free vibrations of the beam, anti-nodes in voltage mode shapes are observed. On the contrary, in the parts of the beam that the values of the induced stress are low, the values of the amplitude of the voltage mode shape are not significant. The obtained results and especially the mode shapes can be used in future studies on the forced vibrations of piezoelectric nanobeams based on Galerkin method.

Experimental Study of the Free Roll Decay Test for the Evaluation of Roll Damping Coefficients (감쇠계수 산출을 위한 자유 횡동요 감쇠실험 연구)

  • Kim, Namwoo;Kim, Yong Jig;Ha, Youngrok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.460-470
    • /
    • 2015
  • In general ships and FPSOs, roll damping is very small and consequently roll motion is very large at the roll resonance frequency. Proper evaluation of the roll damping coefficient at the resonance frequency is an important task in the study of roll motion and usually it is done by the analysis of free roll decay tests. The relative decrement method based on energy relation has been used mainly for the evaluation of roll damping coefficient from the roll decay test so far. As another method, the logarithmic decrement method based on equivalent linear decay assumption can be used for the same purpose and it is relatively simple. In this paper, both of the relative decrement method and the logarithmic decrement method are used for the evaluation of roll damping coefficient including quadratic damping from the free roll decay tests, and their results are cross-checked for verifying the obtained damping coefficients. Through applications to a box-type floating body equiped with bilge keels, it is shown that the two methods give almost the same damping coefficients in a practical view point and the cross-check of their results is to be a good tool to prevent a possible error. And also the quantitative effects of the bilge keels on the roll damping of box-type floating body are shown and discussed.

Study on the Shape of Appendage for the Reduction of Motion of Floating Wind Turbine Platforms (부유식 풍력 하부구조물의 운동 저감을 위한 부가물 형상 연구)

  • Dae-Won Seo;Jaehyeon Ahn;Jungkeun Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1201-1208
    • /
    • 2022
  • In general, to maximize the supply and efficiency of floating offshore wind power generation energy, the motion caused by wave attenuation of the substructure must be reduced. According to previous studies, the motion response was reduced due to the vortex viscosity generated by the damping plate installed in the lower structure among the waves. In this study, a 5 MW semi-submersible OC5 platform and two platforms with attenuation plates were designed, and free decay experiments and numerical calculations were performed to confirm the effect of reducing motion due to vortex viscosity. As a result of the model test, when the heave free decay tests were conducted at drop heights of 30 mm, 40 mm, and 50 mm, compared with the OC5 platform, the platform with two types of damping plates attached had relatively improved motion damping performance. In the model test and numerical calculation results, the damping plate models, KSNU Plate 1 and KSNU Plate 2, were 1.1 times and 1.3 times lower than OC5, respectively, and the KSNU Plate 2 platform showed about two times better damping performance than OC5. This study shows that the area of the damping plate and the vortex viscosity are closely related to the damping rate of the heave motion.

Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System (퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어)

  • Kim, Seung-Ki;Chang, Hyo-Whan;Kim, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.