• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.032 seconds

Low energy ultrasonic single beacon localization for testing of scaled model vehicle

  • Dubey, Awanish C.;Subramanian, V. Anantha;Kumar, V. Jagadeesh
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.391-407
    • /
    • 2019
  • Tracking the location (position) of a surface or underwater marine vehicle is important as part of guidance and navigation. While the Global Positioning System (GPS) works well in an open sea environment but its use is limited whenever testing scaled-down models of such vehicles in the laboratory environment. This paper presents the design, development and implementation of a low energy ultrasonic augmented single beacon-based localization technique suitable for such requirements. The strategy consists of applying Extended Kalman Filter (EKF) to achieve location tracking from basic dynamic distance measurements of the moving model from a fixed beacon, while on-board motion sensor measures heading angle and velocity. Iterative application of the Extended Kalman Filter yields x and y co-ordinate positions of the moving model. Tests performed on a free-running ship model in a wave basin facility of dimension 30 m by 30 m by 3 m water depth validate the proposed model. The test results show quick convergence with an error of few centimeters in the estimated position of the ship model. The proposed technique has application in the real field scenario by replacing the ultrasonic sensor with industrial grade long range acoustic modem. As compared with the existing systems such as LBL, SBL, USBL and others localization techniques, the proposed technique can save deployment cost and also cut the cost on number of acoustic modems involved.

User-Oriented Controller Design for Multi-Axis Manipulators (다관절 머니퓰레이터의 사용자 중심 제어기 설계)

  • Son, HeonSuk;Kang, DaeHoon;Lee, JangMyung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • This paper proposes a PC-based open architecture controller for a multi-axis robotic manipulator. The designed controller can be applied for various multi-axes robotic manipulators since the motion controller is implemented on a PC with its peripheral devices. The accuracy of the controller based on the computed torque method has been measured with the dynamic model of manipulator. Since the controller is implemented in the PC-based architecture, it is free from the user circumstances and the operating environment. Dynamics of the manipulator have been compensated by the feed forward path in the inner loop and the resulting linear outer loop has been controlled by PD algorithm. Using the specialized language, it can be more efficient in programming and in driving of the multi-axis robot. Unlike the conventional controller that is used to control only a specific robot, this controller can be easily changed for various types of robots. This paper proposes a PC-based controller that has a simple architecture with its simple interface circuits than general commercial controllers. The maintenance and the performance of the controller can be easily improved for a specific robot. In fact, using a Samsung multi-axis robot, AT1, the controller performance and convenience of the PC-based controller have been verified by comparing to the commercial one.

  • PDF

Dynamic modeling of nonlocal compositionally graded temperature-dependent beams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.141-164
    • /
    • 2018
  • In this paper, the thermal effect on buckling and free vibration characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as thermal effect, material distribution profile, small scale effects, aspect ratio and mode number on the critical buckling temperature and normalized natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the thermal buckling and vibration behaviour of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams

  • Bensaid, Ismail;Cheikh, Abdelmadjid;Mangouchi, Ahmed;Kerboua, Bachir
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.13-26
    • /
    • 2017
  • In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton's principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.

Nonlinear vibration analysis of an embedded multi-walled carbon nanotube

  • Wu, Chih-Ping;Chen, Yan-Hong;Hong, Zong-Li;Lin, Chia-Hao
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.163-182
    • /
    • 2018
  • Based on the Reissner mixed variational theorem (RMVT), the authors present a nonlocal Timoshenko beam theory (TBT) for the nonlinear free vibration analysis of multi-walled carbon nanotubes (MWCNT) embedded in an elastic medium. In this formulation, four different edge conditions of the embedded MWCNT are considered, two different models with regard to the van der Waals interaction between each pair of walls constituting the MWCNT are considered, and the interaction between the MWCNT and its surrounding medium is simulated using the Pasternak-type foundation. The motion equations of an individual wall and the associated boundary conditions are derived using Hamilton's principle, in which the von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity is considered. Eringen's nonlocal elasticity theory is used to account for the effects of the small length scale. Variations of the lowest frequency parameters with the maximum modal deflection of the embedded MWCNT are obtained using the differential quadrature method in conjunction with a direct iterative approach.

A study on the characteristics of gasoline spray to impinge on wall (벽면에 충돌하는 가솔린 분무의 특성에 관한 연구)

  • Lee, G.Y.
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Even though a relatively complete knowledge base has been established for diesel sprays, much of the knowledge cannot be directly translated to correlate the characteristics of gasoline spray. The macroscopic characteristics of gasoline impingement spray was investigated with photographic and image processing technique by Particle Motion Analysis System. The injector with single hole nozzle diameter of 0.28 mm was used in this experiment and the injection duration was selected as 10 msec. The injection pressure with 0.3, 0.35, and 0.4 MPa, impingement distance or 70, 100 and 130m, impingement angle or 0.15, 30 and $45^{\circ}$ were employed for the variables to affect the spray characteristics of impinging spray. It is clear that there is the analogy on the spray tip penetration between the gasoline impinging jet and diesel free jet. The spray tip penetration of impinging gasoline spray is proportional to the quarter power of the time after start of injection. The maximum height of impinging gasoline spray is also proportional to the quarter power of the time regardless of impingement distance, impingement angle and injection pressure. In addition, the effect of impingement angle on the spray tip penetration is significant according to the time after start of injection, even though there is minor effect in the initial stage of time after start of injection. Moreover, there is no remarkable effect of injection pressure on the spray tip Penetration under the experimental condition used in this study.

  • PDF

Analysis of Two-Dimensional Sloshing Problems by a Lagrangian FEM (Lagrangian 유한요소법을 이용한 2차원 탱크내 유동해석)

  • P.M.,Lee;S.W.,Hong;S.Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.21-30
    • /
    • 1990
  • Theoretical and experimental techniques to analyze the two-dimensional liquid motion in a tank are discussed. A Lagrangian FEM with a velocity correction procedure is introduced to describe incompressible free surface fluid flow. A mesh rezoning technique is used to prevent strong distortion of finite elements in the Lagrangian description. Model test technique for sloshing tank is developed using a hydraulic type bench tester. The influence of the variation in the exciting frequency and amplitude are observed for various fill depths. The results of theoretical calculations are compared with those of experiments.

  • PDF

Treatment of Peroneal Tendon Subluxation by Fibular Groove Deepening (비골건구를 깊게 하는 술식을 이용한 비골건 아탈구의 수술적 치료)

  • Yoo, Ju-Hyung;Lee, Yun-Tae;Ha, Joong-Won;Park, Yung;Shin, Young-Seok
    • Journal of Korean Foot and Ankle Society
    • /
    • v.9 no.2
    • /
    • pp.184-187
    • /
    • 2005
  • Purpose: To evaluate the efficiency of fibular groove deepening and superior retinacular reconstruction for peroneal tendon subluxation. Materials and Methods: Six patients who were treated by fibular groove deepening and superior retinacular reconstruction for peroneal tendon subluxation from March 2000 to August 2004 were reviewed retrospectively. Results: No recurrent subluxation of peroneal tendons had occurred. All patients were return to sports by 4 months after surgery and also gained nearly normal range of motion. Five patients were completely pain free, but one patient had mild occasional pain that limit his sports activities. Conclusion: Fibular groove deepening and superior retinacular reconstruction was believed to be a reliable procedure for peroneal tendon subluxation in spite of some minor complications.

  • PDF

OVERSET-GRID SIMULATION TECHNIQUE FOR ANALYSIS OF 2-DOF SHIP MOTIONS IN WAVES (파랑 중 선박의 자유도 운동해석을 위한 중첩격자 기반의 수치해법)

  • Heo, J.K.;Ock, Y.B.;Park, J.C.;Jeong, S.M.;Akimoto, H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.20-26
    • /
    • 2015
  • This paper introduces a computational method for analysis of the 6-DOF motions of a ship in waves using an overset grid technique which consists of inner and outer domains for representing body motions and numerical wave tank, respectively. High order interpolation scheme is employed to increase numerical accuracy over the interface where physical values, such as velocities and pressure, interact between the inner and outer domains. The numerical schemes and algorithm are addressed in the present paper. An application to motion of KCS container carrier in head waves is presented, and the comparison of responses on heave and pitch motions shows good agreement with those of model tests.

A Way to Further Understanding of Basic Engineering Principle by Supervising Junior High School Students through Sets of Science Experiment

  • Naim, Muhamad;Tsuzuki, Shozo;Fujisawa, Shoichiro;Hanabusa, Takao
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.25-28
    • /
    • 2010
  • The objective of this project is to cultivate interest among junior high school students toward Science & Technology. Six simple experiments will be introduced to the participants (junior high school students) of this project which is focusing on the basic principles of engineering including law of motion, free-fall, force, energy, friction and work. Our student team has been assigned to design six set of experiment according to the principles. The experiments are easy to understand and simple to assemble by the students of age 13 to 15. Experimental manuals were written by the members using simple words complete with figure so that all the participants can understand the procedure of each experiment. In order to make sure the manuals are practically working, the experiment sets were tested and the results were compared with actual theory. As a result, we believe that the experiments can be done by the students within less supervision. The students are able to set up the experiments by using some simple equipment around them. By doing this experiments, we can further our understanding and explain better the principles of energy, force and work.

  • PDF