• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.029 seconds

Vibration Analysis of Multi Cracked Nonuniform Nanobeam by using Differential Transformation Method (미분변환법을 이용한 다중 크랙을 갖는 비균일 나노빔의 진동해석)

  • Shin, Young-Jae;Park, Sung-Hyun;Kim, Jin-Hong;Yoo, Yeong-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.93-101
    • /
    • 2016
  • In this study, the governing equations of motion for multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium were derived. DTM(differential transformation method) was applied to vibration analysis of multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium. The non-dimensional natural frequencies of this nanobeam were obtained for eoe, crack stiffness and elastic medium stiffness with various boundary conditions. The results obtained by this method was compared with previous works and showed the close agreement between two methods. The important conclusions obtained by this study are as follows : 1. As the length of nanobeam is shorter, the effect of scale coefficient is greater. 2. The locations of crack change non-dimensional natural frequency, In the case of fixed-fixed ends, the non-dimensional natural frequency is the biggest in the first crack location of 0.6L of nanobeam length, and the smallest in both ends. In the case of fixed-free ends, the closer the location of first crack go tho the free end, the bigger the non-dimensional natural frequency. 3. As the stiffness of crack is greater, the non-dimensional natural frequency is smaller, And the effect of crack stiffness is similar on both fixed-free ends and fixed-fixed ends. 4. The bigger the stiffness of elastic medium, the greater the non - dimensional natural frequency.

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

A Study on Reducing Vibration of Oil-Free Reciprocating Air Compressors (오일프리 왕복동식 공기압축기 진동저감을 위한 방안 연구)

  • Song, Min-Su;Park, Eun-Suk;Hwang, Sung-Wook;Oh, Seok-Jin;Ko, Hyung-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.656-662
    • /
    • 2011
  • Recently, rolling stock technology has rapidly developed. Nevertheless, ride quality and vibration vibration on vehicle still need more study. EMU to be operated on SMRT Line 7(SR001) extension section is applied to oil-free reciprocating air compressor considering maintainability and convenience of inspection. But reciprocating air compressor compresses the air by back-and-forth motion of piston, and spreads the vibration to surrounding structures by its force of inertia. Optimum design of mounting bracket is able to reduce the vibration. As a result, we analyzed the frequency spectrum on vibration upon value by measuring vibration during operation of air compressor. On this study, we comprehend the vibration transmission process of reciprocating air compressor and consider the measure for reducing vibration by minimizing propagation of vibration.

  • PDF

Non-Reference P Frame Coding for Low-Delay Encoding in Internet Video Coding (IVC의 저지연 부호화 모드를 위한 비참조 P 프레임의 부호화 기법)

  • Kim, Dong-Hyun;Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.250-256
    • /
    • 2014
  • Non-reference P frame coding is used to enhance coding efficiency in low-delay encoding configuration of Internet Video Coding (IVC), which is being standardized as a royalty-free video codec in MPEG. The existing method of non-reference P frame coding which was adopted in the reference Test Model of IVC (ITM) 4.0 adaptively applies a non-reference P frame with a fixed coding structure based on the magnitude of motion vectors (MVs), however, which unexpectedly degrades the coding efficiency for some sequences. In this paper, the existing non-reference P frame coding is improved by changing non-reference P frame coding structure and applying a new adaptive method using the ratio of the amount of generated bits of non-reference frames to that of reference frames as well as MVs. Experimental results show that the proposed non-reference P frame coding gives 6.6% BD-rate bit saving in average over ITM 7.0.

A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells

  • Zine, Abdallah;Tounsi, Abdelouahed;Draiche, Kada;Sekkal, Mohamed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.125-137
    • /
    • 2018
  • In this work, the bending and free vibration analysis of multilayered plates and shells is presented by utilizing a new higher order shear deformation theory (HSDT). The proposed involves only four unknowns, which is even less than the first shear deformation theory (FSDT) and without requiring the shear correction coefficient. Unlike the conventional HSDTs, the present one presents a novel displacement field which incorporates undetermined integral variables. The equations of motion are derived by using the Hamilton's principle. These equations are then solved via Navier-type, closed form solutions. Bending and vibration results are found for cylindrical and spherical shells and plates for simply supported boundary conditions. Bending and vibration problems are treated as individual cases. Panels are subjected to sinusoidal, distributed and point loads. Results are presented for thick to thin as well as shallow and deep shells. The computed results are compared with the exact 3D elasticity theory and with several other conventional HSDTs. The proposed HSDT is found to be precise compared to other several existing ones for investigating the static and dynamic response of isotropic and multilayered composite shell and plate structures.

Measurement and Numerical Model on Wave Interaction with Coastal Structure (해안구조물과 파랑상호작용에 관한 수치모델 및 실험)

  • Kim, In-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2009
  • In recent years, there's been strong demand for coastal structures that have a permeability that serves water affinity and disaster prevention from wave attack. The aim of this study is to examine the wave transformation, including wave run-up that propagates over the coastal structures with a steep slope. A numerical model based on the nonlinear shallow water equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable underlayer and laboratory measurements was carried out in terms of the free surface elevations and fluid particle velocities for the cases of regular and irregular waves over 1:5 impermeable and permeable slopes. The numerical results were used to evaluate the application and limitations of the PBREAK numerical model. The numerical model could predict the cross-shore variation of the wave profile reasonably, but showed less accurate results in the breaking zone that the mass and momentum influx is exchanged the most. Except near the wave crest, the computed depth averaged velocities could represent the measured profile below the trough level fairly well.

Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam

  • Heydari, Abbas
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.589-606
    • /
    • 2018
  • The previous studies reflected the significant effect of neutral-axis position and coupling of in-plane and out-of-plane displacements on behavior of functionally graded (FG) nanobeams. In thin FG beam, this coupling can be eliminated by a proper choice of the reference axis. In shear deformable FG nanobeam, not only this coupling can't be eliminated but also the position of neutral-axis is dependent on through-thickness distribution of shear strain. For the first time, in this paper it is avoided to guess a shear strain shape function and the exact shape function and consequently the exact position of neutral axis for arbitrary gradation of higher order nanobeam are obtained. This paper presents new methodology based on differential transform and collocation methods to solve coupled partial differential equations of motion without any simplifications. Using exact position of neutral axis and higher order beam kinematics as well as satisfying equilibrium equations and traction-free conditions without shear correction factor requirement yields to better results in comparison to the previously published results in literature. The classical rule of mixture and Mori-Tanaka homogenization scheme are considered. The Eringen's nonlocal continuum theory is applied to capture the small scale effects. For the first time, the dependency of exact position of neutral axis on length to thickness ratio is investigated. The effects of small scale, length to thickness ratio, Poisson's ratio, inhomogeneity of materials and various end conditions on vibration and buckling of local and nonlocal FG beams are investigated. Moreover, the effect of axial load on natural frequencies of the first modes is examined. After degeneration of the governing equations, the exact new formulas for homogeneous nanobeams are computed.

Loads of a Rigid Link Connecting a Container Ship and a Catamaran Type Container Offloading Vessel in Waves (파랑중 컨테이너선과 하역선의 연결장치에 작용하는 하중계산)

  • Hong, Do-Chun;Kim, Yong-Yook;Han, Soon-Hung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The hydrodynamic interaction of two floating bodies in waves freely floating or connected by a rigid link is studied by using a boundary element method in the frequency-domain. The exact two-body hydrodynamic coefficients of added mass, wave damping and exciting force are calculated from the radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function. The irregular frequencies in the conventional Green integral equation make it difficult to predict the physical resonance of the fluid in the gap between two bodies floating side by side. However, the improved Green integral equation employed in this study is free of irregular frequencies and always yields the exact solution of the multi-body radiation-diffraction potential boundary value problem. The 6 degree-of-freedom motions of two bodies freely floating side by side or connected parallel by a rigid link have been calculated for the incident wave frequencies ranging from 0.1 to 5 radians per second in head, left and right bow quartering seas. The 6-component load of the rigid link have also been presented.

Study of Blurring Free TFT-LCD Using Short Persistance Cold Cathode Fluorescent Lamp in Blinking Backlight Driving (단잔광 냉음극관을 이용한 잔상없는 TFT-LCD에 관한 연구)

  • Choi, Dae-Seub;Sin, Ho-Chul
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.145-148
    • /
    • 2012
  • In applying LCD to TV application, one of the most significant factors to be improved is image sticking on the moving picture. LCD is different from CRT in the sense that it's continuous passive device, which holds images in entire frame period, while impulse type device generate image in very short time. To reduce image sticking problem related to hold typedisplay mode, we made an experiment to drive TN-LCD like CRT. We made articulate images by turn on-off backlight, and we realized the ratio of Back Light on-off time by counting between on time and off time for video signal input during 1 frame (16.7ms). Conventional CCFL (cold cathode fluorescent lamp) cannot follow fast on-off speed, so we evaluated new fluorescent substances of light source to improve residual light characteristic of CCFL. We realized articulate image generation similar to CRT by CCFL blinking drive and TN-LCD overdriving. As a result, reduced image sticking phenomenon was validated by naked eye and response time measurement.

Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory

  • Mouaici, Fethi;Benyoucef, Samir;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.429-454
    • /
    • 2016
  • In this paper, a shear deformation plate theory based on neutral surface position is developed for free vibration analysis of functionally graded material (FGM) plates. The material properties of the FGM plates are assumed to vary through the thickness of the plate by a simple power-law distribution in terms of the volume fractions of the constituents. During manufacture, defects such as porosities can appear. It is therefore necessary to consider the vibration behavior of FG plates having porosities in this investigation. The proposed theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The equation of motion for FG rectangular plates is obtained through Hamilton's principle. The closed form solutions are obtained by using Navier technique, and then fundamental frequencies are found by solving the results of eigenvalue problems. Numerical results are presented and the influences of the volume fraction index and porosity volume fraction on frequencies of FGM plates are clearly discussed.