• Title/Summary/Keyword: free length

Search Result 1,352, Processing Time 0.029 seconds

Analytical Model for Transfer Bond Performance of Prestressing Strands (PS 강선의 정착부착성능에 관한 해석 모델)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.92-101
    • /
    • 1994
  • A new analytical model is proposed to better understand the transfer bond performance in a prestressed pretensioned concrete beam. The transfer length is divided into an elastic and a plas tic zones in this model. The bond stress is assumed t.o increase proportionally with the slip t.o the lirnit of maximum bond stress within the elastic zone and remains at a constant maximum value wthin the plastic zone. Four main stress patterns: bond stress, slip, steel stress, and concrete stress distributions within the transfer length are obtained precisely. The total transfer length al\ulcornerd free-end slip obtained here give a close comparison to the test results by Cousins et al.

Bilateral Breast Reconstruction with Free TRAM Flaps (횡복직근 유리피판술에 의한 양측 유방 재건)

  • Ahn, Hee Chang
    • Archives of Reconstructive Microsurgery
    • /
    • v.9 no.2
    • /
    • pp.127-133
    • /
    • 2000
  • Free TRAM flap is now increasingly suggested to patients requiring breast reconstruction after the mastectomy. This study is to introduce the experiences of bilateral free TRAM flaps for reconstruction of bilateral breasts and to suggest the way of getting the more satisfactory results. A total of 6 breasts were reconstructed in 3 patients using bilateral free TRAM flaps immediately following the mastectomy. Average operative time for bilateral breast reconstruction was 8 hours comparing to 6.5 hours for unilateral breast reconstruction. Partial or total flap loss did not occur in 6 flaps. Abdomen was repaired directly with muscle and fascia sparing technique without necessity of mesh graft. There was no complication in donor site like abdominal hernia. Bilateral breast reconstruction can achieve exceptionally good aesthetic result with low complication if it is performed with skillful technique and experience. The reason for this is that fairly good symmetry usually is obtained in the initial surgery and in most cases only minimal additional surgery is required to achieve a satisfactory aesthetic result. The one disadvantage of bilateral reconstruction with autologous tissue is the length of the surgical procedure. Although the initial bilateral breast reconstruction can be a long, tedious procedure if free flaps are used, it must be a valuable treatment option for bilaterally mastectomized patients.

  • PDF

Path Space Approach for Planning 2D Shortest Path Based on Elliptic Workspace Geometry Mapping

  • Namgung, Ihn
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.92-105
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on algebraic curve is developed and the concept of collision-free Path Space (PS) is introduced. This paper presents a Geometry Mapping (GM) based on two straight curves in which the intermediate connection point is organized in elliptic locus ($\delta$, $\theta$). The GM produces two-dimensional PS that is used to create the shortest collision-free path. The elliptic locus of intermediate connection point has a special property in that the total distance between the focus points through a point on ellipse is the same regardless of the location of the intermediate connection point on the ellipse. Since the radial distance, a, represents the total length of the path, the collision-free path can be found as the GM proceeds from $\delta$=0 (the direct path) to $\delta$=$\delta$$\_$max/(the longest path) resulting in the minimum time search. The GM of elliptic workspace (EWS) requires calculation of interference in circumferential direction only. The procedure for GM includes categorization of obstacles to .educe necessary calculation. A GM based on rectangular workspace (RWS) using Cartesian coordinate is also considered to show yet another possible GM. The transformations of PS among Circular Workspace Geometry Mapping (CWS GM) , Elliptic Workspace Geometry Mapping (EWS GM) , and Rectangular Workspace Geometry Mapping (RWS GM), are also considered. The simulations for the EWS GM on various computer systems are carried out to measure performance of algorithm and the results are presented.

Changes in Physicochemical Characteristics of Barley Leaves During Growth (보리잎의 성숙시기별 이화학적 특성)

  • Kim, Kyung-Tack;Seog, Ho-Moon;Kim, Sung-Soo;Lee, Young-Tack;Hong, Hee-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.471-474
    • /
    • 1994
  • Growing barley leaves with $20{\sim}50cm$ length were analyzed for chemical constituents including moisture, crude fiber, protein, fat, ash, free sugars, free amino acids, chlorophylls, vitamin C and minerals. During the growth of barley leaves, moisture content decreased, while crude fiber gradually increased. Protein, fat and ash contents of barley leaves remained relatively unchanged. Chlorophyll content increased to a maximum value at the leaf length of 20 cm, and then declined. Minerals of barley leaves were abundant in the following order of K>Ca>P>Na>Mg. Vitamin C content, showing the similar trend to chlorophyll, was the highest at the leaf length of 20 cm. Major free sugars present in growing barley leaves were identified as glucose, fructose and sucrose. All the free sugars reached their maximum values at 20 cm and they were reduced thereafter. Total amount of free amino acids varied from 803 mg% at the Barley stage of l0 cm to 1038 mg% at the later stage of 50 cm. Changes in content for each amino acid were variable to some extent.

  • PDF

Direct Determination of Spectral Phonon-Surface Scattering Rate from Experimental Data on Spectral Phonon Mean Free Path Distribution (실험적 포논 평균자유행로 스펙트럼 분포를 이용한 포논 스펙트럼 포논-표면 산란율 모델)

  • Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.621-627
    • /
    • 2016
  • In this study, we present a model that can be used to calculate the phonon-surface scattering rate directly from the experimental data on phonon mean free path (MFP) spectra of nanostructures. Using this model and the recently reported length-dependent thermal conductivity measurements on $Si_{0.9}Ge_{0.1}$ nanowires (NWs), we investigate the spectral reduced MFP distribution and the spectral phonon-surface scattering rate in the $Si_{0.9}Ge_{0.1}$ NWs. From the results, it is found that the phonon transport properties with the material and the phonon frequency dependency of the spectral phonon-surface scattering rate per unit length of the NW. The model presented in this study can be used for developing heat transfer analysis models of nanomaterials, and for determining the optimum design for tailoring the heat transfer characteristics of nanomaterials for future applications of phonon nanoengineering.

Effects of Mixed Application of Chemical Fertilizer and Liquid Swine Manure on Agronomic Characteristics, Yield and Feed Value of Sorghum × Sudangrass Hybrid for Silage in Paddy Field Cultivation

  • Hwang, Joo Hwan;Lee, Sang Moo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • This study was conducted to investigate the influence of the mixed application of chemical fertilizer (CF) and liquid swine manure (LSM) on the agronomic characteristics, dry matter yield, amino acids, minerals, and free sugars in cultivating Sorghum ${\times}$ Sudangrass hybrid (SSH) on paddy soil. The field experiment was designed in a randomized block design with three replications and consisted of CF 100% (C), CF 70% + LSM 30% (T1), CF 50% + LSM 50% (T2), CF 30% + LSM 70% (T3), and LSM 100% treatment (T4). The application of LSM was based solely on the nitrogen. Plant length, leaf length, leaf width and number of leaf were significantly higher in T4 (p<0.05), but stem diameter did not show significant differences among treatments. Stem hardness increased significantly (p<0.05) as the LSM application rate decreased, but sugar degree decreased significantly (p<0.05) as the LSM application rate decreased. Fresh yield, dry matter yield and TDN yield were the highest in T4, whereas the lowest in T2 (p<0.05). Crude protein, crude fat and crude ash were the highest in C, T4 and T2, respectively (p<0.05). However, NDF and ADF did not show significant difference among treatments. Crude fiber decreased significantly (p<0.05) as the LSM application rate increased. The total mineral content was decreased significantly (p<0.05) as the LSM application rate increased. Total amino acid content was higher in the order of T1> C> T3> T4> T2 (p<0.05). Free sugar content increased significantly (p<0.05) as the LSM application rate increased. The analysis of all the above results suggests that the application of liquid swine manure is very effective, considering the yield performance and the content of sugar degree and free sugar. In addition, liquid swine manure may be possible to grow Sorghum ${\times}$ Sudangrass hybrid without chemical fertilizer.

A Numerical Study on the Characteristics of a Thick Flapped Rudder depending on Various Geometric Parameters using Computational Fluid Dynamics Technique

  • Nguyen, Tien Thua;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.41 no.2
    • /
    • pp.33-38
    • /
    • 2017
  • A marine flapped rudder is designed to improve the effective lift generated by the rudder; this also improves the maneuverability of the ship. The flap is a high lift device installed at the trailing edge of the rudder to augment lift. In this paper, the characteristics of a thick flapped rudder are analyzed at a low Reynolds number with various ratios of flap chord length to total chord length and various aspect ratios, based on the computational fluid dynamics technique. The performance of the rudder with respect to lift, drag, and center of pressure are investigated, and the efficient ratio of flap chord length to total chord length and improved aspect ratio are determined. Ed: highlight - or 'superior'. As a case study, the flow on the flapped rudder of an NACA0021 section shape in free stream condition is simulated. The standard k-epsilon turbulence model is used to model the flow around the flapped rudder. The results indicate that the efficient ratio of the flap chord length to total chord length and aspect ratio are 0.3 and 1.4, respectively.

Arterial or venous free flaps for volar tissue defects of the proximal interphalangeal joint: A comparison of surgical outcomes

  • Choi, Min Suk;Roh, Si Young;Koh, Sung Hoon;Kim, Jin Soo;Lee, Dong Chul;Lee, Kyung Jin;Hong, Min Ki
    • Archives of Plastic Surgery
    • /
    • v.47 no.5
    • /
    • pp.451-459
    • /
    • 2020
  • Background For volar soft tissue defects of the proximal interphalangeal (PIP) joint, free flaps are technically challenging, but have more esthetic and functional advantages than local or distant flaps. In this study, we compared the long-term surgical outcomes of arterial (hypothenar, thenar, or second toe plantar) and venous free flaps for volar defects of the PIP joint. Methods This was a single-center retrospective review of free flap coverage of volar defects between the distal interphalangeal and metacarpophalangeal joint from July 2010 to August 2019. Patients with severe crush injuries (degloving, tendon or bone defects, or comminuted/intra-articular fractures), thumb injuries, multiple-joint and finger injuries, dorsal soft tissue defects, and defects >6 cm in length were excluded from the study, as were those lost to follow-up within 6 months. Thirteen patients received arterial (hypothenar, thenar, or second toe plantar) free flaps and 12 received venous free flaps. Patients' age, follow-up period, PIP joint active range of motion (ROM), extension lag, grip-strength ratio of the injured to the uninjured hand, and Quick Disabilities of Arm, Shoulder & Hand (QuickDASH) score were compared between the groups. Results Arterial free flaps showed significantly higher PIP joint active ROM (P=0.043) and lower extension lag (P =0.035) than venous free flaps. The differences in flexion, grip strength, and QuickDASH scores were not statistically significant. Conclusions The surgical outcomes of arterial free flaps were superior to those of venous free flaps for volar defects of the PIP joint.

Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak;Joo, Seung-Hwan;Kim, Chang-Kon;Kang, Yong-Soo;Jongok Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.375-381
    • /
    • 2003
  • Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.