• Title/Summary/Keyword: free flow speed

Search Result 243, Processing Time 0.023 seconds

Relationships Between Average Travel Speed, Time-Delayed Rate, and Volume on Two-lane Highways with Simulation Data (2차로도로 평균 통행속도-총지체율-교통량 관계 곡선 재정립)

  • Moon, Jae-Pil;Kim, Yong-Seok
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.131-138
    • /
    • 2012
  • PURPOSES : Two-lane highways have one lane in each direction, and lane changing and passing maneuvers take place in the opposing lane depending on the availability of passing sight distance. 2001 Korea Highway Capacity Manual (KHCM) is classified into two classes of two-lane highways (Type I, II), and average travel speed and time-delayed rate are used as measures of effectiveness (MOEs). However, since existing two-lane highways have both uninterrupted and interrupted traffic flow-system elements, a variety of free-flow speeds exhibits in two-lane highways. In addition, it is necessary to check if the linear-relationship between volumes and time-delayed rate is appropriate. Then, this study is to reestablish the relationship between average travel speed, time-delayed rate, and flow. METHODS : TWOPAS model was selected to conduct this study, and the free-flow speeds of passenger cars and the percentage of following vehicles observed in two-lane highways were applied to the model as the input. The revised relationships were developed from the computer simulation. RESULTS : In the revised average travel speed vs. flow relationship, the free-flow speed of 90km/h and 70km/h were added. It shows that the relationship between time delayed-rate and flow appeared to be appropriate with the log-function form and that there was no difference in time-delayed rate between the free flow speeds. In addition to revise the relationships, the speed prediction model and the time-delayed rate prediction model were also developed. CONCLUSIONS : The revised relationships between average travel speed, time-delayed rate, and flow would be useful in estimating the Level of Service(LOS) of a two-lane highway.

Analysis of Provincial road in National Highway Average Speed Variation According to Rainfall Intensity (강우 강도에 따른 일반국도 지방부 도로의 평균속도 변화 분석)

  • Kim, Tae-Woon;Oh, Ju-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.510-518
    • /
    • 2015
  • Weather condition has effect on traffic condition, but there is a lack of research between weather and traffic condition. So, in this study analyzes speed variation according to rainfall intensity in national highway provincial road. The results of the analysis, average speed is reduced about 3.2%. But average speed decrease by maximum 8.8% when traffic volume is below 200vph per direction. Because relatively, free flow traffic speed has greatly deceased according to rainfall intensity in provincial road. Also in this study estimates of speed reduction model according to rainfall and performs the statistical verification. Estimated speed reduction model's slops are gradual when rainfall increased, because average speed is reduced by rainfall when free flow.

Development of Free Flow Speed Estimation Model by Artificial Neural Networks for Freeway Basic Sections (인공신경망을 이용한 고속도로 기본구간 자유속도 추정모형개발)

  • Kang, Jin-Gu;Chang, Myung-Soon;Kim, Jin-Tae;Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.109-125
    • /
    • 2004
  • In recent decades, microscopic simulation models have become powerful tools to analyze traffic flow on highways and to assist the investigation of level of service. The existing microscopic simulation models simulate an individual vehicle's speed based on a constant free-flow speed dominantly specified by users and driver's behavior models reflecting vehicle interactions, such as car following and lane changing. They set a single free-flow speed for a single vehicle on a given link and neglect to consider the effects of highway design elements to it in their internal simulation. Due to this, the existing models are limitted to provide with identical simulation results on both curved and tangent sections of highways. This paper presents a model developed to estimate the change of free-flow speeds based on highway design elements. Nine neural network models were trained based on the field data collected from seven different freeway curve sections and three different locations at each section to capture the percent changes of free-flow speeds: 100 m upstream of the point of curve (PC) and the middle of the curve. The model employing seven highway design elements as its input variables was selected as the best : radius of curve, length of curve, superelevation, the number of lanes, grade variations, and the approaching free-flow speed on 100 m upstream of PC. Tests showed that the free-flow speeds estimated by the proposed model were statistically identical to the ones from the field at 95% confidence level at each three different locations described above. The root mean square errors at the starting and the middle of curve section were 6.68 and 10.06, and the R-squares at these points were 0.77 and 0.65, respectively. It was concluded from the study that the proposed model would be one of the potential tools introducing the effects of highway design elements to free-flow speeds in simulation.

NUMERICAL ANALYSIS OF VENTILATED CAVITATION WITH FREE SURFACE EFFECTS (자유표면 영향을 고려한 환기공동 전산유동해석)

  • Jin, M.S.;Kim, H.Y.;Ha, C.T.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • Cavitating flow is usually formed on the surface of a high speed underwater object. When a object moves near a free surface at very high speed, the cavity signature becomes one of the major factors to be overcome by sensors of military satellite. The present work was to study the free surface effect on the ventilated cavitation. The governing equations were Navier-Stokes equations based on a homogeneous mixture model. The multiphase flow solver used an implicit preconditioning method in the curvilinear coordinate system. The cavitation model used here was the one first presented by Merkle et al.(2006) and redeveloped by Park & Ha(2009). Computations considered the free surface effects were carried out with a NACA0012 hydrofoil and the corresponding results were compared with the experimental data to have a good agreement. Calculations were then performed considering the ventilated cavitation, including the effect of non-condensable gas under the free surface effects.

Depressurized Circulating Water Channel Design Using CFD (수치 해석을 이용한 감압 회류 수조 설계)

  • 부경태;조희상;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.22-29
    • /
    • 2003
  • New high-speed depressurized circulating water channel was designed by using the CFD code. Flow in the channel has free surface and pressure in the test section can be depressed. In this study, Flow separation and bubble occurrence were considered in designing the contraction nozzle shape for better flow uniformity Tn the test section. To supplement velocity defect due to the free surface, nozzle injection system more effective in high-speed flow was installed instead of drum system. Necessary power and injection techniques were proposed. And guide vane arrangement was analyzed to reduce the flow resistance and keep quiet free surface from ´surging´. Wave absorber was devised to reduce the wave resistance and to prevent the entrainment of air to the diffuser.

Molten Metal Flow Analysis of Casting Process Using SPH Method (SPH 기법을 이용한 주조공정 용탕 주입 유동 해석)

  • Park, Byung Lae;Lee, Sang Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.54-60
    • /
    • 2018
  • It is important to develop more efficient and productive casting processes for an automated high precision molten-metal casting system. Detailed analysis of molten-metal flow in the casting process by the numerical approach will help to optimize the control of a ladle. In this study, the smoothed particle hydrodynamics method was applied to analyze casting flow characteristics with different tilting angular speed and initial molten-metal level. The smoothed particle hydrodynamics technique has advantages to easily handle non-linear free surface behavior with the absence of a computational mesh. We found that tilting angular speed has relatively greater effect on the casting flowrate and that the effect of the initial molten-metal level is only minor. Further extensive study will be necessary to find an optimal condition for high efficient casting system.

Flow Control Inside a Molten Zn Pot for Improving Surface Quality of Zinc Plated Strips (아연도금강판의 품질향상을 위한 도금욕 내부 유동제어 연구)

  • Choi, Jae-Ho;Koh, Min-Seok;Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1392-1399
    • /
    • 2001
  • The flow fields inside a molten Zn pot of continuous hot-chip galvanizing process were investigated experimentally. With varying several parameters including the strip speed Vs, flow rate Q of induction heater. scrapper location and baffle configuration, instantaneous velocity fields were measured using a PIV velocity field measurement technique. Inside the strip region, counter-clockwise rotating flow is dominant. The general flow pattern inside the strip region is nearly not influenced by the strip speed Vs, flow rate Q and the scrapper location. In the exit region, the flow separated from the moving strip due to the existence of a stabilizing roll ascends to the free surface, for the cases of no scrapper and scrapper detached form the roll. On the other hand, the ascending flow to the free surface is decreased, as the flow rate Q of induction heater increases. By installing a baffle around the uprising strip, the flow moving up to the stabilizing roll decreases. In addition, B-type baffle is better than A-type baffle in reducing speed of flow around the stabilizing rolls. However, the flow ascended to the free surface is largely influenced by changing the flow rate Q, and the scrapper location, irrespective of the baffle type.

Flow Structure of the Wake behind an Elliptic Cylinder Close to a Free Surface

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1784-1793
    • /
    • 2001
  • The flow fields around an elliptic cylinder of axis ratio AR=2 adjacent to a free surface were investigated experimentally using a water channel. The main objective is to understand the effect of the free surface on the flow structure in the near-wake. The flow fields were measured by varying the depth of cylinder submergence, for each experimental condition, 350 velocity fields were measured using a single-frame PIV system and ensemble-averaged to obtain the spatial distribution of turbulent statics. For small submergence depths a large-scale eddy structure was observed in the near-wake, causing a reverse flow near the free surface, downstream of the cylinder. As the depth of cylinder submergence was increased, the flow speed in the gap region between the upper surface of the cylinder and the free surface increased and formed a substantial jet flow. The general flow structure of the elliptic cylinder is similar to previous results for a circular cylinder submerged near to a free surface. However, the width of the wake and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder are smaller tan those for a circular cylinder.

  • PDF

FINITE SPEED OF PROPAGATION IN DEGENERATE EINSTEIN BROWNIAN MOTION MODEL

  • HEVAGE, ISANKA GARLI;IBRAGIMOV, AKIF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.108-120
    • /
    • 2022
  • We considered qualitative behaviour of the generalization of Einstein's model of Brownian motion when the key parameter of the time interval of free jump degenerates. Fluids will be characterised by number of particles per unit volume (density of fluid) at point of observation. Degeneration of the phenomenon manifests in two scenarios: a) flow of the fluid, which is highly dispersing like a non-dense gas and b) flow of fluid far away from the source of flow, when the velocity of the flow is incomparably smaller than the gradient of the density. First, we will show that both types of flows can be modeled using the Einstein paradigm. We will investigate the question: What features will particle flow exhibit if the time interval of the free jump is inverse proportional to the density and its gradient ? We will show that in this scenario, the flow exhibits localization property, namely: if at some moment of time t0 in the region, the gradient of the density or density itself is equal to zero, then for some T during time interval [t0, t0 + T] there is no flow in the region. This directly links to Barenblatt's finite speed of propagation property for the degenerate equation. The method of the proof is very different from Barenblatt's method and based on the application of Ladyzhenskaya - De Giorgi iterative scheme and Vespri - Tedeev technique. From PDE point of view it assumed that solution exists in appropriate Sobolev type of space.

Computational Flow Analysis on Improvement Effect of Wind Shear by a Structure Installed Upstream of a Wind Turbine (풍력발전기 풍상부 지면설치 구조물에 의한 풍속전단 개선효과의 전산유동해석)

  • Kim, Hyun-Goo;Woo, Sang-Woo;Jang, Moon-Seok;Shin, Hyuong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.278-281
    • /
    • 2008
  • This study demonstrates the advantages of a shear-free structure designed to modify vertical profiles of wind speed in the atmospheric surface layer. Computational fluid dynamics(CFD) software, FLUENT is used to interpret the velocity field modification around the structure and wind turbine. The shapes of shear-free structure, installed at upstream toward prevailing wind direction, would be fences, buildings and trees, etc. According to the simulation results, it is obvious that wind shear between heights of wind turbine's blades is decreased together with a speed-up advantage. This would lead decrease of periodic wind loading caused by wind shear and power-out increase by flow uniformity and wind speed-up.

  • PDF