• Title/Summary/Keyword: free fatty acids (FFAs)

Search Result 20, Processing Time 0.018 seconds

Changes of Organic Acids and Free Fatty Acids During the Ripening of Emmental Cheese (에멘탈치즈의 숙성 중 유기산과 유리지방산의 변화)

  • Shin, Yong-Kook;Oh, Nam-Su;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.928-934
    • /
    • 2011
  • The objective of this study was to characterize the lactate metabolism and lipolysis in Emmental cheese made of Korean raw milk throughout the ripening periods; 14 d at $10^{\circ}C$, 42 d at $23^{\circ}C$, and 30 d at $4^{\circ}C$. Emmental cheese was made using a commercial starter culture with propionic acid bacteria (PAB) and without PAB as a control on the pilot plant scale. Changes in the contents of five organic acids (citric, lactic, formic, acetic, and propionic acid) and individual free fatty acids (FFAs) were measured using HPLC/PDA and GC/FID. As a result of propionic fermentation by PAB, the concentration of acetic acid and propionic acid increased up to 1.5 and 6.1 g/kg, respectively and the most dramatic increased occurred when incubated in the hot room ($23^{\circ}C$). Lactic, citric, and formic acid contents were 2.6, 2.5 and 0.8 g/kg at the end of ripening, respectively. As a result of lipolysis, the amount of total FFAs was 6,628.2 mg/kg. Compared to the control, levels of individual FFAs from butyric (C6:0) to linoleic (C18:2) acids increased significantly (p<0.05) during the ripening period. Especially, 65.1% of total FFAs was released in the $23^{\circ}C$ room and the most abundant FFAs were palmitic (C16:0), stearic (C18:0) and oleic acid (C18:1). These results demonstrated that the lipolysis of Emmental cheese was strongly affected by bacterial lipase from PAB.

The Effect of Alisma orientale Extract on Free Fatty Acid-induced Lipoapoptosis in HepG2 Cells (택사(澤瀉)가 유리지방산으로 유발된 HepG2 cell의 lipoapoptosis에 미치는 영향)

  • Kim, Eun-Young;Lee, Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.2
    • /
    • pp.184-194
    • /
    • 2014
  • Objectives : This study was designed to investigate the effect on lipoapoptosis of Alisma orientale extract against free fatty acid-induced cellular injury. Methods : HepG2 cells were used in an vitro model. HepG2 cells were treated with free fatty acids to generate a cellular model of nonalcoholic fatty liver disease (NAFLD). Using this cellular model, the anti-apoptotic effect and reducing steatosis of Alisma orientale extract against free fatty acid-induced cellular injury was evaluated by measuring steatosis and apoptosis. Results : Alisma orientale extract significantly attenuated free fatty acid-induced intracellular steatosis. Alisma orientale extract inhibited free fatty acid-mediated activation of pJNK, PUMA, BAX, caspase-3, and -9, and apoptotic kinases that are correlated with NAFLD. Alisma orientale extract also promoted Bcl-2, a anti-apoptotic protein. Conclusions : From the above, the Alisma orientale extract decreased the hepatocyte steatosis and showed the hepatocelluar protective effect by the regulation of apoptosis-related protein. It proposes the possibility of Alisma orientale extract to the treatment of nonalcoholic fatty liver disease in clinics.

Dietary effect of Lactobacillus plantarum CJLP55 isolated from kimchi on skin pH and its related biomarker levels in adult subjects (김치유산균 Lactobacillus plantarum CJLP55 섭취가 성인 남녀의 피부 산도 및 관련 구성 인자의 변화에 미치는 영향)

  • Han, Sangshin;Shin, Jihye;Lim, Sunhee;Ahn, Hee Yoon;Kim, Bongjoon;Cho, Yunhi
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.149-156
    • /
    • 2019
  • Purpose: The skin pH is maintained by epidermal lactate, free fatty acids (FFAs), and free amino acids (FAAs). As a significant determinant of skin health, the skin pH is increased (less acidic) under abnormal and aged skin conditions. In a search for dietary alternatives that would promote an acidic skin pH, this study investigated the dietary effects of Lactobacillus plantarum CJLP55 isolated from Korean kimchi on the skin pH, and epidermal levels of lactate, FFAs, and FAAs in adult subjects. Methods: Seventy eight subjects (mean age $24.9{\pm}0.5years$, range 19 ~ 37 years) were assigned randomly to ingest CJLP55, Lactobacillus strain from kimchi, (n = 39, CJLP group) or placebo supplements (n = 39, placebo group) for 12 weeks in a double-blind, placebo-controlled trial. Skin pH and epidermal levels of lactate, FFAs and FFAs were assessed at 0, 6 and 12 weeks. Results: Although significant decreases in skin pH were observed in both the CJLP and placebo groups at 6 weeks, the skin pH was decreased significantly only in the CJLP group at 12 weeks. In parallel, the epidermal level of lactate in the CJLP group was also increased by 25.6% at 12 weeks. On the other hand, the epidermal level of FAAs were not altered in the CJLP and placebo groups, but the epidermal level of total FFAs, including palmitic acid and stearic acid, was lower in the CJLP group than in the placebo group over 12 weeks. The changes in the other FFAs, such as palmitoleic acid and oleic acid, were similar in the CJLP and placebo groups over 12 weeks. Conclusion: Overall, a dietary supplement of CJLP55 promotes acidic skin pH with a selective increase in epidermal lactate in adult subjects.

Study of the Suppressive Effect and Its Mechanism of Amomum Cardamomum L. on Free Fatty Acid-induced Liver Steatosis (지방간에 대한 백두구 에틸아세테이트 추출물의 억제 효과 및 기전 연구)

  • Lim, Dong Woo;Kim, Hyuck;Park, Sung Yun;Park, Sun Dong;Park, Won Hwan;Kim, Jai Eun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.159-166
    • /
    • 2017
  • Through this study, the authors investigated the anti-steatosis effects of the Amomum cardamomum ethyl acetate fraction in free fatty acids (FFAs)-induced human hepatocellular carcinoma HepG2 cells. The ethyl acetate fraction of Amomum cardamomum (ACEA) was extracted with 70% ethanol and then the extract was evaporated using a rotary evaporator prior to sequential fractionation. Human hepatocellular carcinoma were treated with different concentrations of ACEA in the presence and absence of FFAs. To demonstrate the reactive oxygen species (ROS) scavenging activity, DCFDA level was analyzed by using in vitro assay system. Cell viability, lipid accumulation, intracellular triglycerides, malondialdehyde (MDA), liver steatosis related signaling molecules and inflammatory cytokines such as interleukin (IL)-6, 8, tumor necrosis factor-alpha ($TNF-{\alpha}$) were also investigated. As results, ACEA inhibited the FFAs-induced ROS, lipid accumulation, intracellular triglycerides, and MDA in a dose dependent manner. Treatment of human hepatocellular cells with ACEA induced the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) and carnitine palmitoyltransferase I (CPT1) expression using western blot analysis. ACEA also potently suppressed the FFAs-induced inflammatory cytokines including IL-6, IL-8 and $TNF-{\alpha}$. These results suggest that the ethyl acetate fraction of Amomum cardamoum extract own inhibitory effects of liver steatosis by inhibiting ROS, lipid accumulation, intracellular triglycerides, MDA through AMPK signaling and anti-inflammatory actions.

Effects of Psychrotrophic Bacteria Acinetobacter genomospecies 10 and Serratia liquefaciens on Raw Milk Quality (내냉성 미생물인 Acinetobacter genomospecies 10과 Serratia liquefaciens가 원유의 품질에 미치는 영향)

  • Shin, Yong Kook;Oh, Nam Su;Lee, Hyun Ah;Nam, Myoung Soo
    • Food Science of Animal Resources
    • /
    • v.33 no.4
    • /
    • pp.542-548
    • /
    • 2013
  • This study was conducted to investigate effect of psychrotrophic bacteria on the quality of raw milk. Acinetobacter genomospecies 10 was selected as lipolytic species, and Serratia liquefaciens as proteolytic species. Lipase present in inoculated raw milk with Acinetobacter genomospecies 10 did not affect total solid and fat contents. However, the free fatty acid (FFA) content, especially short chain FFAs, of milk with Acinetobacter genomospecies 10 was dramatically increased. FFAs produced by lipolysis of milk fat are important in flavor of dairy products, excessive lipolysis occurring in milk and dairy products could cause off-flavor, and produced FFAs may have an underiable effect on their flavor. In addition, protease influenced the quality of inoculated raw milk with Serratia liquefaciens. In degradation patterns of casein by SDS-PAGE analysis from inoculatred raw milk with Serratia liquefaciens, casein content was gradually decreased during storage at $4^{\circ}C$, and extensive degradation of $\kappa$-casein was observed on the storage day of 13. The free amino acids such as leucine, valine, arginine, and tyrosine were dramatically increased, which causes bitter taste in raw milk. These excessive peptides in dairy products, produced by psychrotrophic bacteria, can be possible to develop off-flavors and be responsible for gelling of milk by degradation.

Cudrania tricuspidata Fruit Extract Ameliorates Free Fatty Acid-induced Lipid Accumulation in HepG2 Cells (유리지방산으로 지방축적을 유도한 HepG2 cells 대한 꾸지뽕 열매 추출물의 개선 효과)

  • Lee, Hyo-Jeong;Park, Se-Eun;Kim, Seung
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1144-1151
    • /
    • 2019
  • Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with various metabolic syndromes, such as obesity, dyslipidemia, hypertension, and diabetes. Cudrania tricuspidata is a medicinal plant distributed widely in Asia and has been used in clinical practice to treat various diseases. The aim of this study is to determine the lipid-lowering effects of C. tricuspidata fruit extract (CTE) using a cell model induced by free fatty acids (FFAs). HepG2 cells were exposed to 1mM FFAs (palmitic acid:oleic acid = 2:1) for 24 hr to simulate the conditions of NAFLD in vitro. CTE attenuated the increases of lipid accumulation, intracellular triglyceride, and cholesterol content and inhibited 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) activity in the HepG2 cells in a dose-dependent manner. Also, CTE inhibited the protein expression of lipogenesis-related genes, such as sterol regulatory element-binding protein-1/-2 (SREBP-1/-2), fatty acid synthase (FAS), and stearoyl CoA desaturase-1 (SCD-1) in FFAs-induced lipid accumulation in HepG2 cells. In addition, CTE-induced adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in HepG2 cells. These results suggest that CTE attenuates hepatic lipid accumulation by inhibiting lipogenesis through the modulation of the AMPK signaling pathway on FFAs-induced lipogenesis in HepG2 cells and may potentially prevent NAFLD.

An Innate Bactericidal Oleic Acid Effective Against Skin Infection of Methicillin-Resistant Staphylococcus aureus: A Therapy Concordant with Evolutionary Medicine

  • Chen, Chao-Hsuan;Wang, Yanhan;Nakatsuji, Teruaki;Liu, Yu-Tsueng;Zouboulis, Christos C.;Gallo, Richard L.;Zhang, Liangfang;Hsieh, Ming-Fa;Huang, Chun-Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.391-399
    • /
    • 2011
  • Free fatty acids (FFAs) are known to have bacteriocidal activity and are important components of the innate immune system. Many FFAs are naturally present in human and animal skin, breast milk, and in the bloodstream. Here, the therapeutic potential of FFAs against methicillin-resistant Staphylococcus aureus (MRSA) is demonstrated in cultures and in mice. Among a series of FFAs, only oleic acid (OA) (C18:1, cis-9) can effectively eliminate Staphylococcus aureus (S. aureus) through cell wall disruption. Lauric acid (LA, C12:0) and palmitic acid (PA, C16:0) do not have this ability. OA can inhibit growth of a number of Gram-positive bacteria, including hospital and community-associated MRSA at a dose that did not show any toxicity to human sebocytes. The bacteriocidal activities of FFAs were also demonstrated in vivo through injection of OA into mouse skin lesions previously infected with a strain of MRSA. In conclusion, our results suggest a promising therapeutic approach against MRSA through boosting the bacteriocidal activities of native FFAs, which may have been co-evolved during the interactions between microbes and their hosts.

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load

  • Niklas, Jens;Bonin, Anne;Mangin, Stefanie;Bucher, Joachim;Kopacz, Stephanie;Matz-Soja, Madlen;Thiel, Carlo;Gebhardt, Rolf;Hofmann, Ute;Mauch, Klaus
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.396-401
    • /
    • 2012
  • Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.

Differential effects of saturated and unsaturated fatty acids on vascular reactivity in isolated mesenteric and femoral arteries of rats

  • Vorn, Rany;Yoo, Hae Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.403-409
    • /
    • 2019
  • Free fatty acid (FFA) intake regulates blood pressure and vascular reactivity but its direct effect on contractility of systemic arteries is not well understood. We investigated the effects of saturated fatty acid (SFA, palmitic acid), polyunsaturated fatty acid (PUFA, linoleic acid), and monounsaturated fatty acid (MUFA, oleic acid) on the contractility of isolated mesenteric (MA) and deep femoral arteries (DFA) of Sprague-Dawley rats. Isolated MA and DFA were mounted on a dual wire myograph and phenylephrine (PhE, $1-10{\mu}M$) concentration-dependent contraction was obtained with or without FFAs. Incubation with $100{\mu}M$ of palmitic acid significantly increased PhE-induced contraction in both arteries. In MA, treatment with $100{\mu}M$ of linoleic acid decreased $1{\mu}M$ PhE-induced contraction while increasing the response to higher PhE concentrations. In DFA, linoleic acid slightly decreased PhE-induced contraction while $200{\mu}M$ oleic acid significantly decreased it. In MA, oleic acid reduced contraction at low PhE concentration (1 and $2{\mu}M$) while increasing it at $10{\mu}M$ PhE. Perplexingly, depolarization by 40 mM KCl-induced contraction of MA was commonly enhanced by the three fatty acids. The 40 mM KCl-contraction of DFA was also augmented by linoleic and oleic acids while not affected by palmitic acid. SFA persistently increased alpha-adrenergic contraction of systemic arteries whereas PUFA and MUFA attenuated PhE-induced contraction of skeletal arteries. PUFA and MUFA concentration-dependent dual effects on MA suggest differential mechanisms depending on the types of arteries. Further studies are needed to elucidate underlying mechanisms of the various effects of FFA on systemic arteries.

A Study on the Effects and Mechanisms of the Combination Extract of Ephedrae Herba and Coicis Semen on Lipid Accumulation and Glucose Absorption in Non-Alcoholic Fatty Liver Disease (마황과 의이인 혼합추출물이 비알콜성 지방간 모델에서 지질 축적 및 포도당 흡수에 미치는 효과 및 기전 연구)

  • Ga-Ram Yu;Hye-Lin Jin;Dong-Woo Lim;Won-Hwan Park
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Objectives: Ephedrae herba (EH) and Coicis semen (CS) has been frequently prescribed for the treatment of obesity. However, effects of combinational extracts of these two herbs on non-alcoholic fatty liver disease are unknown. The aim of the present study was to investigate the effects of EH and CS on lipid accumulation and glucose absorption in free fatty acids (FFAs) or palmitic acid (PA)-treated HepG2 cells. Methods: Five samples of EH and CS were extracted by combination ratios (S1=0:100, S2=25:75, S3=50:50, S4=75:25, S5=100:0). Oil Red O staining was used to measure lipid accumulation in FFAs-induced steatosis cells. Intracellular triglycerides and total cholesterol levels were measured in FFAs-induced steatotic HepG2 cells. In PA-treated cells, intracellular 2-NBDG was detected using a fluorescence microplate reader and flow cytometry. Phosphorylation of key metabolism-related factors of AMP-activated protein kinase and acetyl-CoA carboxylase, expression of key lipid synthesis-related factors carnitine palmitoyltransferase 1 alpha (CPT1α), sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα) were confirmed by western blot. Results: Treatment of EH-CS combination in the FFAs-induced steatotic HepG2 cells significantly reduced lipid accumulation. As the relative ratio of Ephedrae herba increased, the lipid-lowering effects of the combination were increased. However, S1 and S5 of Ephedrae herba and Coicis semen did not significantly reduce triglycerides and total cholesterol induced by FFAs. However, the combination of Ephedrae herba and Coicis semen restored glucose absorption in PA-induced HepG2 cells. Major makers of SREBP1, PPARγ, C/EBPα, and CPT1α expression tended to decrease with EH ratio. Conclusions: The EH-CS combination has advantages over sole EH and CS extracts in improving lipid and glucose metabolism in liver steatosis models.