• 제목/요약/키워드: frame-type shear failure

검색결과 30건 처리시간 0.024초

Effects of the location and size of web openings on shear behavior of clamped-clamped reinforced concrete beams

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Ibrahim Y. Hakeem;Ilker Kalkan
    • Computers and Concrete
    • /
    • 제33권3호
    • /
    • pp.251-264
    • /
    • 2024
  • The present study pertains to the effects of variations in the location and size of drilled web openings on the behavior of fixed-fixed reinforced concrete (RC) beams. For this purpose, a reference bending beam with a transverse opening in each half span was tested to failure. Later, the same beam was modeled and analyzed with the help of finite element software using ABAQUS. Upon achieving close agreement between the experimental and numerical results, the location and size of the web opening were altered to uncover the effects of these factors on the shear strength and load-deflection behavior of RC beams. The experimental failure mode of the tested beam and the numerical results were also verified by theoretical calculations. In numerical analysis, when compared to the reference (D0) specimen, if the distance of the opening center from the support is 0 or h or 2h, reduction in load-bearing capacity of 1.5%-22.8% or 2.0%-11.3% or is 4.1%-40.7%. In other words, both the numerical analyses and theoretical calculations indicated that the beam behavior shifted from shear-controlled to flexure-controlled as the openings approached the supports. Furthermore, the deformation capacities, energy absorption values, and the ductilities of the beams with different opening diameters also increased with the decreasing distance of the opening from supports. Web compression failure was shown to be the predominant mode of failure of beams with large diameters due to the lack of sufficient material in the diagonal compression strut of the beam. The present study indicated that transverse openings with diameters, not exceeding about 1/3 of the entire beam depth, do not cause the premature shear failure of RC beams. Finally, shear damage should be prevented by placing special reinforcements in the areas where such gaps are opened.

주상복합구조의 전이보 상세에 따른 성능과 파괴모드 (Capacities and Failure Modes of Transfer Girders in the Upper-Wall and Lower-Frame Structures having different Detailing)

  • 이한선;김상연;고동우;권기혁;김민수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.845-850
    • /
    • 2000
  • This paper presents the results of tests performed on the transfer girders which have been generally used between upper walls and lower frames in the hybrid structures. The 8 specimens were designed using (1) ACI method, (2) strut-tie model, and (3) X-type shear reinforcement cage. The capacities of the specimens are in general larger than the design values except the one designed according to strut-tie model. The reason for this difference seems to be due to the arbitrary allocation of transferred shear force to the path of direct compression strut and the path of indirect strut and tie. The failure modes turn out toe be (1) shear failure at critical shear zone, (2) compressive concrete crushing in the diagonal strut in the shear zone of transfer girder, and (3) compressive concrete crushing in the corner of upper wall.

전단벽의 덮개재료에 따른 전단저항 성능 (Shear Load Performance Test in Accordance with Sheathing Materials of Shear Wall)

  • 장상식;신일중;김윤희
    • 농업과학연구
    • /
    • 제37권2호
    • /
    • pp.271-276
    • /
    • 2010
  • In this study, the light-frame wood shear walls according to the sheathing materials was carried out to investigate the shear load performance. Most common sheathing materials are the structural OSB and gypsum board used to consist wall of wood-frame house. Seven different type of specimens are composed of several sheathing materials and shear test was taken to evaluate shear performance by KS F 2154. As a result, shear walls(G12.5/G12.5 and G12.5/OSB) show that maximum shear strength and shear rigidity modulus are 7316N/mm${\cdot}$118.25 N/mm and 11129 N/mm${\cdot}$184.66 N/mm respectively. The shear wall using gypsum board 15mm improve maximum shear strength and shear rigidity modulus about 30%. The shear wall using 15mm gypsum board showed intermediate value in one side specimens. Different types of shear walls could be compared with the shear load performance. Also, nailed joint failure aspects are different to sheathing material and installing method.

Nonlinear modeling of beam-column joints in forensic analysis of concrete buildings

  • Nirmala Suwal;Serhan Guner
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.419-432
    • /
    • 2023
  • Beam-column joints are a critical component of reinforced concrete frame structures. They are responsible for transferring forces between adjoining beams and columns while limiting story drifts and maintaining structural integrity. During severe loading, beam-column joints deform significantly, affecting, and sometimes governing, the overall response of frame structures. While most failure modes for beam and column elements are commonly considered in plastic-hinge-based global frame analyses, the beam-column joint failure modes, such as concrete shear and reinforcement bond slip, are frequently omitted. One reason for this is the dearth of published guidance on what type of hinges to use, how to derive the joint hinge properties, and where to place these hinges. Many beam-column joint models are available in literature but their adoption by practicing structural engineers has been limited due to their complex nature and lack of practical application tools. The objective of this study is to provide a comparative review of the available beam-column joint models and present a practical joint modeling approach for integration into commonly used global frame analysis software. The presented modeling approach uses rotational spring models and is capable of modeling both interior and exterior joints with or without transverse reinforcement. A spreadsheet tool is also developed to execute the mathematical calculations and derive the shear stress-strain and moment-rotation curves ready for inputting into the global frame analysis. The application of the approach is presented by modeling a beam column joint specimen which was tested experimentally. Important modeling considerations are also presented to assist practitioners in properly modeling beam-column joints in frame analyses.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

Lateral force-displacement ductility relationship of non-ductile squat RC columns rehabilitated using FRP confinement

  • Galal, K.
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.75-89
    • /
    • 2007
  • Post-earthquake reconnaissance and experimental research indicate that squat reinforced concrete (RC) columns in existing buildings or bridge piers are vulnerable to non-ductile shear failure. Recently, several experimental studies were conducted to investigate upgrading the shear resistance capacity of such columns in order to modify their failure mode to ductile one. Among these upgrading methods is the use of fibre-reinforced polymer (FRP) jackets. One of the preferred analytical tools to simulate the response of frame structures to earthquake loading is the lumped plasticity macromodels due to their computational efficiency and reasonable accuracy. In these models, the columns' nonlinear response is lumped at its ends. The most important input data for such type of models is the element's lateral force-displacement backbone curve. The objective of this study is to verify an analytical method to predict the lateral force-displacement ductility relationship of axially and laterally loaded rectangular RC squat columns retrofitted with FRP composites. The predicted relationship showed good accuracy when compared with tests available in the literature.

Seismic repair of captive-column damage with CFRPs in substandard RC frames

  • Tunaboyu, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.1-13
    • /
    • 2017
  • The effectiveness of the repair scheme for the damaged captive-columns with CFRPs (Carbon Fiber Reinforced Polymer) was investigated in terms of response quantities such as strength, ductility, dissipated energy and stiffness degradation. Two 1/3 scale, one-story one-bay RC (Reinforced Concrete) frames were designed to represent the substandard RC buildings in Turkish building stock. The first one, which is the reference specimen, is the bare frame without infill wall. Partial infill wall with opening was constructed between the columns of the second frame and this caused captive column defect. Severe damage was observed with the concentration of shear cracks in the second specimen columns. Then, the damaged members were repaired by CFRP wrapping and retested. For the three test series, similar reversed cyclic lateral displacement under combined effect of axial load was applied to the top of the columns. Overall response of the bare frame was dominated by flexural cracks. Brittle type of shear failure in the column top ends was observed in the specimen with partial infill wall. It was observed that former capacity of damaged members of the second frame was recovered by the applied repair scheme. Moreover, ultimate displacement capacity of the damaged frame was improved considerably by CFRP wrapping.

철근콘크리트 프레임 및 전단벽체의 경계기둥 띠철근비 변화에 따른 구조성능 평가 (Structural Performance Evaluation of Reinforced Concrete Frame and Shear Wall with Various Hoop Ratios of Boundary Column)

  • 신종학;하기주;전찬목
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.303-311
    • /
    • 1998
  • 본 연구는 수직하중과 정.부 수평하중이 동시에 작용하는 순수강접 프레임과 완전강접 바벨형 철근콘크리트 전단벽 시험체의 경계기둥 띠철근비를 주요변수로 하여 총 10개의시험체를 실물 크기의 약 1/3로 축소 모델화하여 제작한 후, 구조성능 평가를 위한 실험을 실시하여 이력거동 특성, 수평강성 및 최대내력,파괴형태, 연성능력등을 비교 고찰하여 다음과 같은 결론을 얻었다. 순수강접 프레임 및 완전강접 바벨형 전단벽 시헴체의 경우, 각 시험체의 실험을 통하여 구한 이력거동곡선을 비교 고찰한 결과 기둥의 띠철근비가 클수록 최대하중에 도달한 후 강도저하 현상이 서서히 진행되었고, 연성적인 파괴형태를 나타내었다. 완전강접 바벨형 전단벽 시험체의 경우, 좌우기둥의 띠철근비가 적은 시험체는 비교적 띠철근비가 큰 시험체에 비하여 최종 파괴시의 파괴형태는 사인장 균열에 의해 지배됨을 규명할 수 있었다. 완전강접 바벨형 전단벽 시험체의 초대수평내력은 순수강접 프레임 시험체의최대수평내력보다 약 5.47~7.95배 증가하였다.

고대 민가의 구조 및 목조 프레임의 수평내력에 관한 연구 (A Study on the Structure and lateral Loading Capacity of Wooden Frame of Ancient Commoner's House)

  • 서정문;최인길;전영선;이종림;신재철;허택영
    • 한국지진공학회논문집
    • /
    • 제1권2호
    • /
    • pp.31-37
    • /
    • 1997
  • 삼국시대 이후 근대까지 민가의 가장 보편적인 형태였던 초가삼가의 평균적인 상세 구조를 제시하였다. 목조 프레임이 주로 사용되었으며 프레임의 조인트는 사개맞춤이 일반적이었다. 초가삼간을 구성하는 평주 및 고주 프레임의 정적 수평내력을 1:1 실험모델을 통하여 평가하였다. 기둥 상부 조인트의 형태 및 심벽이 수평내력에 미치는 영향과 조인트의 파괴모드를 분석하였다. 실험결과 평주 프레임의 극한 수평내력은 1,090N, 파괴시 최대 수평변위는 400mm(1/6 rad)이었다. 고주 프레임의 경우 이들 값은 각각 4,160 N 및 250 mm(1/9.6 rad)이었다. 프레임의 거동은 모두 조인트의 거동에 지배되었으며 매우 큰 비선형을 보였다. 조인트의 파괴모드는 평주 프레임의 경우 화통가지의 전단파괴, 고주프레임의 경우 화통가지의 휨파괴가 주요한 모드였다.

  • PDF

S형 스트럿 강재 댐퍼 보강에 의한 RC 골조의 내진성능 향상 (Seismic Resisting Capacity Enhancement by S Type Strut Steel Damper Strengthening)

  • 이현호
    • 대한건축학회논문집:구조계
    • /
    • 제34권4호
    • /
    • pp.43-50
    • /
    • 2018
  • The purpose of this study is to improve the seismic performance of RC framed buildings such as piloti buildings and school facilities. For this purpose, a half size RC frame specimen (SFD) was made and the inside of frame was reinforced with steel frame and S type strut steel damper. The experimental results are compared with those of the previous studies under the same conditions. The comparative specimens are non-reinforced specimen (BF) and damper reinforced specimen (AFD) that confined the column with an aramid sheet. As a result of comparing the maximum strength, stiffness degradation and energy dissipation capacity, SFD specimen was evaluated to be better than comparative specimens. According to the experimental results and FE analysis results, it was confirmed that the shear deformation was concentrated in the steel damper. And it was showed that cracks were concentrated at the upper and lower ends of the strut of the S type damper, and the final failure was observed at struts. From this, it was verified that the steel damper appropriately dissipates energy due to the lateral load.