• Title/Summary/Keyword: frame interpolation

Search Result 161, Processing Time 0.033 seconds

Interpolation Method for 3D Stereo Images Transmitted by Frame-Compatible Packing Format (프레임 호환 패킹 포맷으로 전송된 3D 스테레오 영상에 대한 내삽 방법)

  • Le, Anh Vu;Won, Chee-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • Stereoscopic 3D video can be transmitted by frame-compatible packing format to fulfill the compatibility requirement with the existing digital TV. Then, the reduced stereo image needs to be expanded to the original size at the receiver. This paper proposes an adaptive interpolation method for the discarded image lines. The horizontal line-based linear filter and NEDI6 filter are used selectively for the interpolation of each pixel. Experimental results show that the NEDI6 combined with the horizontal line-based linear filter yields better image quality than the bilinear method by around 0.6dB.

Efficient Motion Vector Correction Method m Motion Compensated Interpolation Technique Using Bilateral Motion Estimation (쌍방향 움직임 예측을 이용한 움직임 보상 보간 기법에서 효율적인 움직임 벡터 보정 방법)

  • Park, Ji-Yoon;Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7C
    • /
    • pp.687-696
    • /
    • 2009
  • The motion compensated interpolation method is widely used to increase video frame rates. Especially, the bilateral motion estimation technique provides the improved results, since it doesn't make the overlapping and missing blocks in the interpolated frame. However, the motion vectors, which are obtained by the bilateral motion estimation, sometimes require further correction. In this paper, we propose the efficient motion vector.correction method for the bilateral motion estimation technique. By comparing the motion vectors of neighboring blocks and searching the new motion vector after merging the neighboring blocks, the erroneous motion vectors are efficiently corrected. It is shown that the proposed method provides better results, compared with the conventional methods.

New Efficient Motion Compensated Frame Interpolation Method by Overlapped Block Motion Estimation (중첩 블록 기반 움직임 추정에 의한 중간 영상 합성 기법)

  • 하태현;이성주;김성식;성준호;김재석
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.54-63
    • /
    • 2004
  • A new motion compensated frame Interpolation (MCI) algorithm by block based motion estimation (BME) is proposed. The block for the BME is composed of a large overlapped block for practical object motion estimation (ME) and a small block (which has a coinciding center with the ME-block) for the more precise motion compensated image description. Pixels in the block for the ME are sub-sampled to reduce computational complexity. The proposed method is executed with the various ME-blocks which have different size and sub-sampling ratio, and compared to the conventional method.

Virtual reference image-based video coding using FRUC algorithm (FRUC 알고리즘을 사용한 가상 참조 이미지 기반 부호화 기술 연구)

  • Yang, Fan;Han, Heeji;Choi, Haechul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.650-652
    • /
    • 2022
  • Frame rate up-conversion (FRUC) algorithm is an image interpolation technology that improves the frame rate of moving pictures. This solves problems such as screen shake or blurry motion caused by low frame rate video in high-definition digital video systems, and provides viewers with a more free and smooth visual experience. In this paper, we propose a video compression technique using deep learning-based FRUC algorithm. The proposed method compresses and transmits after excluding some images from the original video, and uses a deep learning-based interpolation method in the decoding process to restore the excluded images, thereby compressing them with high efficiency. In the experiment, the compression performance was evaluated using the decoded image and the image restored by the FRUC algorithm after encoding the video by skipping 1 or 3 pages. When 1 and 3 sheets were excluded, the average BD-rate decreased by 81.22% and 27.80%. The reason that excluding three images has lower encoding efficiency than excluding one is because the PSNR of the image reconstructed by the FRUC method is low.

  • PDF

Distortion Estimation Using Block-Adaptive Matching Characteristics for Motion Compensated Interpolation Frame (움직임 보상 보간 프레임에 대한 블록 적응적 정합 특성을 이용한 왜곡 예측 기법)

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1058-1068
    • /
    • 2011
  • Video FRUC (Frame Rate Up Conversion) is one of the main issues that have arisen in recent years with the explosive growth of video sources and display formats in consumer electronics. Most advanced FRUC algorithms adopt an efficient motion interpolation technique to determine the motion vector field of interpolated frames. But, in some application areas such as post processing in receiver side, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame was reconstructed. In order to achieve this aim, first, this paper introduces some cost functions to estimate the reliability of a block in the MCI frame. Then, by using these functions, this paper proposes two distortion estimation models for evaluating how much noise was produced in the MCI frame. Through computer simulations, it is shown that the proposed estimation methods perform effectively in estimating the noises of the MCI frame.

Motion Estimation Algorithm for Frame Interpolation in Video Sequence with Luminance Variation (밝기 변화가 있는 영상에서 프레임 보간을 위한 움직임 추정 알고리즘)

  • Kwak, Tong-Ill;Hwang, Bo-Hyun;Lee, Seung-Joon;Yun, Jong-Ho;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.787-788
    • /
    • 2008
  • In this paper, we propose a Motion Estimation (ME) based on Frame Difference (FD) for frame interpolation in video sequence with luminance variation. Proposed algorithm uses limited blocks whose motion is predicted by FD for ME. The Block average of current and previous frame for the blocks which has no motion variation is used as interpolated block. In experiments, the proposed algorithm shows better performance than conventional algorithms.

  • PDF

A Motion Estimation Using Adaptively Expanded Block based on Frame Difference for Frame Interpolation (프레임 보간을 위한 프레임 차이 기한의 적응형 확장 블록 움직임 추정)

  • Kwak, Tong-Ill;Cho, Hwa-Hyun;Yun, Jong-Ho;Hwang, Bo-Hyun;Choi, Myung-Ryul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.598-604
    • /
    • 2008
  • The hold-type display panel such as a liquid crystal displays(LCD) has problem of motion blur. The problem can be improved by a Frame Rate-up Conversion(FRC) using a frame interpolation. We propose a Motion Estimation(ME) by using adaptively expanded block based on frame difference for PRC. The proposed method is executed using an adaptively expanded block in order to get more accurate motion vector. By using frame difference, we can reduce complexity more significantly than conventional methods. We use quantitative analysis in order to evaluate experimental results. The results show that the proposed method has better performance and lower complexity than conventional methods.

Wavelet-based Pitch Detector for 2.4 kbps Harmonic-CELP Coder (2.4 kbps 하모닉-CELP 코더를 위한 웨이블렛 피치 검출기)

  • 방상운;이인성;권오주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.717-726
    • /
    • 2003
  • This paper presents the methods that design the Wavelet-based pitch detector for 2,4 kbps Harmonic-CELP Coder, and that achieve the effective waveform interpolation by decision window shape of the transition region, Waveform interpolation coder operates by encoding one pitch-period-sized segment, a prototype segment, of speech for each frame, generate the smooth waveform interpolation between the prototype segments for voiced frame, But, harmonic synthesis of the prototype waveforms between previous frame and current frame occur not only waveform errors but also discontinuity at frame boundary on that case of pitch halving or doubling, In addtion, in transition region since waveform interpolation coder synthesizes the excitation waveform by using overlap-add with triangularity window, therefore, Harmonic-CELP fail to model the instantaneous increasing speech and synthesis waveform linearly increases, First of all, in order to detect the precise pitch period, we use the hybrid 1st pitch detector, and increse the precision by using 2nd ACF-pitch detector, Next, in order to modify excitation window, we detect the onset, offset of frame by GCI, As the result, pitch doubling is removed and pitch error rate is decreased 5.4% in comparison with ACF, and is decreased 2,66% in comparison with wavelet detector, MOS test improve 0.13 at transition region.

Time-Domain Quantization and Interpolation of Pitch Cycle Waveform

  • Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.11-16
    • /
    • 2008
  • In this paper, a pitch cycle waveform (PCW) is extracted, quantized, and interpolated in a time domain to synthesize high-quality speech at low bit rates. The pre-alignment technique is proposed for the accurate and efficient PCW extraction, which predicts the current PCW position from the previous PCW position assuming that pitch periods evolve slowly. Since the pitch periods are different frame by frame, the original PCW is converted into the fixed-dimension PCW using the dimension-conversion method, and subsequently quantized by code-excited linear predictive (CELP) coding. The excitation signal for the linear predictive coding (LPC) synthesis filter is generated using the time-domain interpolation and interlink of the quantized PCW's. The coder operates at 4.2 kbit/s and 3.2 kbit/s depending on the pitch period. Informal listening test demonstrates the effectiveness of the proposed coding scheme.

Frame Rate Up-Conversion Using Pyramid Structure and Quadtree (피라미드 구조와 쿼드트리를 이용한 프레임율 증가 변환)

  • Lee, Jichan;Kim, Jun-Geon;Lee, Junho;Kim, Kisun;Lee, Daeho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.90-92
    • /
    • 2014
  • 본 논문에서는 피라미드 구조와 쿼드트리를 이용하는 움직임 보상 프레임 보간(motion compensated frame interpolation, MCFI)의 새로운 방법을 제안한다. 일반적인 MCFI 방법에서는 고정된 크기의 프레임과 블록에서 움직임 벡터(motion vector, MV)를 이용하여 두 프레임 사이의 프레임 영상을 추정한다. 그러나 이와 같은 방법은, 큰다양한 방향으로 움직이는 물체들의 MV 나 큰 움직임을 추정하기 어렵다. 이러한 문제점을 해결하기 위해서 본 논문에서는 블록 크기와 정합 영역이 가변적으로 적용될 수 있는 피라미드 구조와 쿼드트리를 이용한 프레임 보간 기법(pyramid structure and quadtree motion compensated frame interpolation, PQ-MCFI)를 제안한다. 제안하는 기법은 물체들이 빠르게 움직이는 장면과 다양한 방향으로 움직이는 장면에서 이전의 기법에 비해서 높은 PSNR 을 보이며, 실제 인간의 시각적인 측면에서는 더욱 정밀한 결과를 보인다.

  • PDF