• Title/Summary/Keyword: frame error rate (FER)

Search Result 38, Processing Time 0.02 seconds

Coded performance evaluation of a multi-antenna OFDMA system for reverse-link (다중안테나를 고려한 직교 주파수 분할 다중 접속 방식의 역방향 부호화 성능 검증)

  • Cho, Han-Gyu;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, link-level performance of a OFDMA technique, which has been considered as a standard for 802.16, 802.20, 3G-LTE, WiMax, and WiBro, is evaluated for next-generation wireless communication systems. While many researches have focused on uncoded forward-link performances, this paper provides a coded performance of a reverse-link OFDMA system. Performance degradation due to time offset among reverse-link users and frequency offset during FFT process is investigated. Transmitter and receiver antenna diversity techniques are used to overcome performance degradation. Performance of a OFDMA system is compared with a CDMA system in terms of FER and throughput to emphasize the advantage of OFDMA system for a reverse-link. Finally, under given specification, Eb/No required to achieve the maximum throughput of a reverse-link is proposed considering various coded rates and antenna permutations.

Protograph-Based Block LDPC Code Design for Marine Satellite Communications (해양 위성 통신을 위한 프로토그래프 기반 블록 저밀도 패리티 검사 부호 설계)

  • Jeon, Ki Jun;Ko, Byung Hoon;Myung, Se-Chang;Lee, Seong Ro;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.515-520
    • /
    • 2014
  • In this paper, the protograph-based block low density parity check (LDPC) code, which improves the performance and reduces the encoder/decoder complexity than the conventional Digital Video Broadcasting Satellite Second Generation (DVB-S2) LDPC code used for the marine satellite communication, is proposed. The computer simulation results verify that the proposed protograph-based LDPC code has the better performance in both the bit error rate (BER) and the frame error rate (FER) than the conventional DVB-S2 LDPC code. Furthermore, by analyzing the encoding and decoding computational complexity, we show that the protograph-based block LDPC code has the efficient encoder/decoder structure.

Performance Analysis of Uplink Transmit Power Control during Soft Handoff (소프트 핸드오프 상황에서 상향링크 송신 전력 제어 성능 분석)

  • Kim, Jin;Park, Su-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.632-638
    • /
    • 2012
  • In a mobile communication system, we analyze the performance of uplink transmit power control mechanisms for various environments when a mobile station is during soft handoff. The quality of data frames at the receiver side can be better at a base station controller (BSC) than at its base stations (BSs) if the BSC combines selectively the data frames transmitted from the BSs. And, in order to achieve the target frame error rate (FER), the outer loop power control should be done at the BSC instead of at the BSs. It can save the energy consumption of a mobile station during the soft handoff.

Optimization and Performance Analysis of Partial Multiplexing (부분 다중화의 성능 분석 및 최적화)

  • Kim, Seong Hwan;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1589-1596
    • /
    • 2013
  • Recently, spectral efficiency or reliability is required to be improved in the scenario of multiple access. In this paper, we consider a scenario where two source nodes access one destination node. Different with conventional multiple access studies, in our research, a part of the allocated resource is shared by two source nodes and this scheme is called partial multiplexing. Let $R_s$ denote the ratio of the amount of the shared resource to that of the resource allocated to each user. We analyze and optimize the performance of the partial multiplexing in term of $R_s$. We show that the optimal $R_s$ to maximize the throughput is 1 or 0 based on approximated bit error rate (BER). In addition, if we set a constraint on frame error rate (FER), $R_s$ can have a value between 0 and 1. We also find the approximated $R_s$ to meet the constraint as a closed form. Partial multiplexing can be a novel multiple access scheme.

A Novel Transmit Diversity Technique for IS-2000 Systems (IS-2000 시스템을 위한 SS-OTD에 관한 연구)

  • Yoon, Hyun-Goo;Yook Jong-Gwan;Park, Han-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1B
    • /
    • pp.56-65
    • /
    • 2002
  • This paper proposes a novel transmit diversity technique, namely symbol split orthogonal transmit diversity (SS-OTD). In this technique, full path diversity and temporal diversity are achieved by combining orthogonal transmit diversity technique (OTD) technique with the symbol splitting method proposed by Meyer. Its performances is simulated for fundamental channels associated with the forward link of the IS-2000 system, and then compared with those of OTD and space-time spreading (STS). Our proposed method offers a 0.5-7.7dB performance improvement over OTD under various simulation environments and its performance is similar to STS. Moreover, compares with that of STS, the peak-to-average power ratio (PAR) of transmitted signals in SS-OTD is reduced by a maximal 1.35dB, which decreases the complexity of base station RF devices, such as power amplifiers. Thus, SS-OTD is comparable to STS in performance and superior to STS in the cost and efficiency of base station RF devices.

Collision Performance Improvement in Orthogonal Code Hopping Multiplexing Systems Using Multiple Antennas (다중 안테나를 이용한 직교 부호 도약 다중화 시스템의 성능향상)

  • Jung, Bang-Chul;Lee, Woo-Jae;Park, Yeoun-Sik;Jeon, Seong-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2100-2112
    • /
    • 2011
  • An orthogonal code hopping multiplexing (OCHM) technique has been proposed for accommodating a large number of users with low channel activities than the number of orthogonal codewords through statistical multiplexing in downlink cellular systems. In this paper, a multiple input multiple output (MIMO) antenna based OCHM system is proposed to improve the performance. Each modulated symbol is repeated N times and the N repeated symbols are transmitted simultaneously using N transmit antennas. Through repetitions, the effect of perforations that the OCHM system experiences is decentralized among the repeated symbols and the full perforation probability is significantly reduced. Each receiver detect the transmitted signal using its pre-assigned code hopping pattern. Simulation results show that the proposed scheme saves the required energy for a given frame error rate (FER).

Performance Analysis of MlMO-OFDMA System Combined with Adaptive Beamforming (다중 입출력과 적응형 빔형성 기술 결합기법을 적용한 직교주파수분할 다중 접속시스템의 성능 분석)

  • Chung, Jae-Ho;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.86-92
    • /
    • 2011
  • This paper details the downlink performance analysis of an multiple antennas system that combines adaptive beamforming and spatial multiplexing (SM) Multiple Input Multiple Output (MIMO). The combination of MIMO signal processing with adaptive beamforming is applied to WiBro, the South Korean Orthogonal Frequency Division Multiple Access (OFDMA) system that follows the IEEE 802.16e standard. Performance analysis is based on the results of experiments and simulations obtained from a fixed-point simulation testbed. Simulations demonstrate that the MIMO Beamforming OFDMA system improves the required signal to noise ratio (SNR) over the conventional MIMO OFDMA system by 3 dB (QPSK) / 2.5 dB (16-QAM) for the frame error rate (FER) of 1% in the WiBro signal environments. From the implementation of the fixed-point simulation testbed and its experimental results, we verify the feasibility of the MIMO Beamforming technology for realizing a practical WiBro base station.

Performance Evaluation of Channel Estimation for WCDMA Forward Link with Space-Time Block Coding Transmit Diversity (시공간 블록 부호 송신 다이버시티를 적용한 WCDMA 하향 링크에서 채널 추정기의 성능 평가)

  • 강형욱;이영용;김용석;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6A
    • /
    • pp.341-350
    • /
    • 2003
  • In this paper, we evaluate the performance of a moving average (MA) channel estimation filter when space-time block coding transmit diversity (STBC-TD) is applied to the wideband direct sequence code division multiple access (WCDMA) forward link. And we present the infinite impulse response (IIR) filter scheme that can reduce the required memory buffer and the channel estimation delay time. This paper also compares the performance between MA filter scheme and IIR filter scheme in various Rayleigh fading channel environments through the bit error rate (BER) and the frame error rate (FER). Extensive computer simulation results show that transmission with STBC-TD provides a significant gain in performance over no transmit diversity technique, particularly at pedestrian speeds. If STBC-TD technique is employed in the channel estimator based on MA filter, it provides considerable performance gains against Rayleigh fading and reduces the optimum filter tap number. Consequently, the channel estimation delay time and the complexity of the receiver are reduced. In addition, the channel estimator based on IIR filter has the advantages such as little memory requirement and no delay time compared to the MA scheme. However, IIR filter coefficients is very sensitive to the mobile speed change and it exerts a serious influence upon the performance. For that reason, it is important to set uP the optimum IIR filter coefficients.