• Title/Summary/Keyword: frame detection

Search Result 920, Processing Time 0.029 seconds

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

Using CNN- VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory

  • Zhong, Yongfeng;Liang, Xiaojun
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.223-239
    • /
    • 2022
  • Object detection has always been to pursue objects with particular properties or representations and to predict details on objects including the positions, sizes and angle of rotation in the current picture. This was a very important subject of computer vision science. While vision-based object tracking strategies for the analysis of competitive videos have been developed, it is still difficult to accurately identify and position a speedy small ball. In this study, deep learning (DP) network was developed to face these obstacles in the study of tennis motion tracking from a complex perspective to understand the performance of athletes. This research has used CNN-VGG 16 to tracking the tennis ball from broadcasting videos while their images are distorted, thin and often invisible not only to identify the image of the ball from a single frame, but also to learn patterns from consecutive frames, then VGG 16 takes images with 640 to 360 sizes to locate the ball and obtain high accuracy in public videos. VGG 16 tests 99.6%, 96.63%, and 99.5%, respectively, of accuracy. In order to avoid overfitting, 9 additional videos and a subset of the previous dataset are partly labelled for the 10-fold cross-validation. The results show that CNN-VGG 16 outperforms the standard approach by a wide margin and provides excellent ball tracking performance.

Machine Learning-Based Reversible Chaotic Masking Method for User Privacy Protection in CCTV Environment

  • Jimin Ha;Jungho Kang;Jong Hyuk Park
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.767-777
    • /
    • 2023
  • In modern society, user privacy is emerging as an important issue as closed-circuit television (CCTV) systems increase rapidly in various public and private spaces. If CCTV cameras monitor sensitive areas or personal spaces, they can infringe on personal privacy. Someone's behavior patterns, sensitive information, residence, etc. can be exposed, and if the image data collected from CCTV is not properly protected, there can be a risk of data leakage by hackers or illegal accessors. This paper presents an innovative approach to "machine learning based reversible chaotic masking method for user privacy protection in CCTV environment." The proposed method was developed to protect an individual's identity within CCTV images while maintaining the usefulness of the data for surveillance and analysis purposes. This method utilizes a two-step process for user privacy. First, machine learning models are trained to accurately detect and locate human subjects within the CCTV frame. This model is designed to identify individuals accurately and robustly by leveraging state-of-the-art object detection techniques. When an individual is detected, reversible chaos masking technology is applied. This masking technique uses chaos maps to create complex patterns to hide individual facial features and identifiable characteristics. Above all, the generated mask can be reversibly applied and removed, allowing authorized users to access the original unmasking image.

ML-based Allowable Axial Loading Estimation of Existing RC Building Structures (기계학습 기반 노후 철근콘크리트 건축물의 축력허용범위 산정 방법)

  • Hwang, Heejin;Oh, Keunyeong;Kang, Jaedo;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.257-266
    • /
    • 2024
  • Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.

Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles (장애물 인식 지능을 갖춘 자율 이동로봇의 구현)

  • 류한성;최중경
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.312-321
    • /
    • 2003
  • In this paper, we implement robot which are ability to recognize obstacles and moving automatically to destination. we present two results in this paper; hardware implementation of image processing board and software implementation of visual feedback algorithm for a self-controlled robot. In the first part, the mobile robot depends on commands from a control board which is doing image processing part. We have studied the self controlled mobile robot system equipped with a CCD camera for a long time. This robot system consists of a image processing board implemented with DSPs, a stepping motor, a CCD camera. We will propose an algorithm in which commands are delivered for the robot to move in the planned path. The distance that the robot is supposed to move is calculated on the basis of the absolute coordinate and the coordinate of the target spot. And the image signal acquired by the CCD camera mounted on the robot is captured at every sampling time in order for the robot to automatically avoid the obstacle and finally to reach the destination. The image processing board consists of DSP (TMS320VC33), ADV611, SAA7111, ADV7l76A, CPLD(EPM7256ATC144), and SRAM memories. In the second part, the visual feedback control has two types of vision algorithms: obstacle avoidance and path planning. The first algorithm is cell, part of the image divided by blob analysis. We will do image preprocessing to improve the input image. This image preprocessing consists of filtering, edge detection, NOR converting, and threshold-ing. This major image processing includes labeling, segmentation, and pixel density calculation. In the second algorithm, after an image frame went through preprocessing (edge detection, converting, thresholding), the histogram is measured vertically (the y-axis direction). Then, the binary histogram of the image shows waveforms with only black and white variations. Here we use the fact that since obstacles appear as sectional diagrams as if they were walls, there is no variation in the histogram. The intensities of the line histogram are measured as vertically at intervals of 20 pixels. So, we can find uniform and nonuniform regions of the waveforms and define the period of uniform waveforms as an obstacle region. We can see that the algorithm is very useful for the robot to move avoiding obstacles.

Film Line Scratch Detection using a Neural Network based Texture Classifier (신경망 기반의 텍스처 분류기를 이용한 스크래치 검출)

  • Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.26-33
    • /
    • 2006
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each region. It has gained increasing attention by many researchers, to support multimedia service of high quality. In general, an old film is degraded by dust, scratch, flick, and so on. Among these, the most frequent degradation is the scratch. So far techniques for the scratch restoration have been developed, but they have limited applicability when dealing with all kinds of scratches. To fully support the automatic scratch restoration, the system should be developed that can detect all kinds of scratches from a given frame of old films. This paper presents a neurual network (NN)-based texture classifier that automatically detect all kinds of scratches from frames in old films. To facilitate the detection of various scratch sizes, we use a pyramid of images generated from original frames by having the resolution at three levels. The image at each level is scanned by the NN-based classifier, which divides the input image into scratch regions and non-scratch regions. Then, to reduce the computational cost, the NN-based classifier is only applied to the edge pixels. To assess the validity of the proposed method, the experiments have been performed on old films and animations with all kinds of scratches, then the results show the effectiveness of the proposed method.

Optimal Localization through DSA Distortion Correction for SRS

  • Shin, Dong-Hoon;Suh, Tae-Suk;Huh, Soon-Nyung;Son, Byung-Chul;Lee, Hyung-Koo;Choe, Bo-Young;Shinn, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In Stereotactic Radiosurgery (SRS), there are three imaging methods of target localization, such as digital subtraction Angiography (DSA), computed tomography (CT), magnetic resonance imaging (MRI). Especially, DSA and MR images have a distortion effect generated by each modality. In this research, image properties of DSA were studied. A first essential condition in SRS is an accurate information of target locations, since high dose used to treat a patient may give a complication on critical organ and normal tissue. Hut previous localization program did not consider distortion effect which was caused by image intensifier (II) of DSA. A neurosurgeon could not have an accurate information of target locations to operate a patient. In this research, through distortion correction, we tried to calculate accurate target locations. We made a grid phantom to correct distortion, and a target phantom to evaluate localization algorithm. The grid phantom was set on the front of II, and DSA images were obtained. Distortion correction methods consist of two parts: 1. Bilinear transform for geometrical correction and bilinear interpolation for gray level correction. 2. Automatic detection method for calculating locations of grid crosses, fiducial markers, and target balls. Distortion was corrected by applying bilinear transform and bilinear interpolation to anterior-posterior and left-right image, and locations of target and fiducial markers were calculated by the program developed in this study. Localization errors were estimated by comparing target locations calculated in DSA images with absolute locations of target phantom. In the result, the error in average with and without distortion correction is $\pm$0.34 mm and $\pm$0.41 mm respectively. In conclusion, it could be verified that our localization algorithm has an improved accuracy and acceptability to patient treatment.

  • PDF

A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection (초음파 열 영상 검사를 이용한 브레이징 접합 결함 검출)

  • Cho, Jai-Wan;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.426-431
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly.

Real-time Moving Object Recognition and Tracking Using The Wavelet-based Neural Network and Invariant Moments (웨이블릿 기반의 신경망과 불변 모멘트를 이용한 실시간 이동물체 인식 및 추적 방법)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.10-21
    • /
    • 2008
  • The present paper propose a real-time moving object recognition and tracking method using the wavelet-based neural network and invariant moments. Candidate moving region detection phase which is the first step of the proposed method detects the candidate regions where a pixel value changes occur due to object movement based on the difference image analysis between continued two image frames. The object recognition phase which is second step of proposed method recognizes the vehicle regions from the detected candidate regions using wavelet neurual-network. From object tracking Phase which is third step the recognized vehicle regions tracks using matching methods of wavelet invariant moments bases to recognized object. To detect a moving object from image sequence the candidate regions detection phase uses an adaptive thresholding method between previous image and current image as result it was robust surroundings environmental change and moving object detections were possible. And by using wavelet features to recognize and tracking of vehicle, the proposed method decrease calculation time and not only it will be able to minimize the effect in compliance with noise of road image, vehicle recognition accuracy became improved. The result which it experiments from the image which it acquires from the general road image sequence and vehicle detection rate is 92.8%, the computing time per frame is 0.24 seconds. The proposed method can be efficiently apply to a real-time intelligence road traffic surveillance system.

Algorithm of Generating Adaptive Background Modeling for crackdown on Illegal Parking (불법 주정차 무인 자동 단속을 위한 환경 변화에 강건한 적응적 배경영상 모델링 알고리즘)

  • Joo, Sung-Il;Jun, Young-Min;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • The Object tracking by real-time image analysis is one of the major concerns in computer vision and its application fields. The Object detection process of real-time images must be preceded before the object tracking process. To achieve the stable object detection performance in the exterior environment, adaptive background model generation methods are needed. The adaptive background model can accept the nature's phenomena changes and adapt the system to the changes such as light or shadow movements that are caused by changes of meridian altitudes of the sun. In this paper, we propose a robust background model generation method effective in an illegal parking auto-detection application area. We also provide a evaluation method that judges whether a moving vehicle stops or not. As the first step, an initial background model is generated. Then the differences between the initial model and the input image frame is used to trace the movement of object. The moving vehicle can be easily recognized from the object tracking process. After that, the model is updated by the background information except the moving object. These steps are repeated. The experiment results show that our background model is effective and adaptable in the variable exterior environment. The results also show our model can detect objects moving slowly. This paper includes the performance evaluation results of the proposed method on the real roads.

  • PDF