• Title/Summary/Keyword: frame detection

Search Result 920, Processing Time 0.025 seconds

An Abnormal Worker Movement Detection System Based on Data Stream Processing and Hierarchical Clustering

  • Duong, Dat Van Anh;Lan, Doi Thi;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.88-95
    • /
    • 2022
  • Detecting anomalies in human movement is an important task in industrial applications, such as monitoring industrial disasters or accidents and recognizing unauthorized factory intruders. In this paper, we propose an abnormal worker movement detection system based on data stream processing and hierarchical clustering. In the proposed system, Apache Spark is used for streaming the location data of people. A hierarchical clustering-based anomalous trajectory detection algorithm is designed for detecting anomalies in human movement. The algorithm is integrated into Apache Spark for detecting anomalies from location data. Specifically, the location information is streamed to Apache Spark using the message queuing telemetry transport protocol. Then, Apache Spark processes and stores location data in a data frame. When there is a request from a client, the processed data in the data frame is taken and put into the proposed algorithm for detecting anomalies. A real mobility trace of people is used to evaluate the proposed system. The obtained results show that the system has high performance and can be used for a wide range of industrial applications.

Comparison of Text Beginning Frame Detection Methods in News Video Sequences (뉴스 비디오 시퀀스에서 텍스트 시작 프레임 검출 방법의 비교)

  • Lee, Sanghee;Ahn, Jungil;Jo, Kanghyun
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.307-318
    • /
    • 2016
  • 비디오 프레임 내의 오버레이 텍스트는 음성과 시각적 내용에 부가적인 정보를 제공한다. 특히, 뉴스 비디오에서 이 텍스트는 비디오 영상 내용을 압축적이고 직접적인 설명을 한다. 그러므로 뉴스 비디오 색인 시스템을 만드는데 있어서 가장 신뢰할 수 있는 실마리이다. 텔레비전 뉴스 프로그램의 색인 시스템을 만들기 위해서는 텍스트를 검출하고 인식하는 것이 중요하다. 이 논문은 뉴스 비디오에서 오버레이 텍스트를 검출하고 인식하는데 도움이 되는 오버레이 텍스트 시작 프레임 식별을 제안한다. 비디오 시퀀스의 모든 프레임이 오버레이 텍스트를 포함하는 것이 아니기 때문에, 모든 프레임에서 오버레이 텍스트의 추출은 불필요하고 시간 낭비다. 그러므로 오버레이 텍스트를 포함하고 있는 프레임에만 초점을 맞춤으로써 오버레이 텍스트 검출의 정확도를 개선할 수 있다. 텍스트 시작 프레임 식별 방법에 대한 비교 실험을 뉴스 비디오에 대해서 실시하고, 적절한 처리 방법을 제안한다.

Blocking Artifacts Detection in Frequency Domain for Frame Rate Up-conversion (프레임율 변환을 위한 주파수 영역에서의 블로킹 현상 검출)

  • Kim, Nam-Uk;Jun, Dongsan;Lee, Jinho;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.472-483
    • /
    • 2016
  • This paper proposes a blocking artifacts detection algorithm in frequency domain for MC-FRUC (Motion Compensated Frame Rate Up-Conversion). Conventional MC-FRUC algorithms occur blocking artifacts near interpolated block boundaries since motion compensation is performed from block-based motion vector. For efficiently decreasing blocking artifacts, this paper analyses frequency characteristics of the interpolated frame and reduces blocking artifacts on block boundaries. In experimental results the proposed method shows better subjective quality than some conventional FRUC method and also increases the PSNR(Peak Signal to Noise Ratio) value on average 0.45 dB compared with BDMC(Bi-Directional Motion Compensation).

Security Verification of Video Telephony System Implemented on the DM6446 DaVinci Processor

  • Ghimire, Deepak;Kim, Joon-Cheol;Lee, Joon-Whoan
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper we propose a method for verifying video in a video telephony system implemented in DM6446 DaVinci Processor. Each frame is categorized either error free frame or error frame depending on the predefined criteria. Human face is chosen as a basic means for authenticating the video frame. Skin color based algorithm is implemented for detecting the face in the video frame. The video frame is classified as error free frame if there is single face object with clear view of facial features (eyes, nose, mouth etc.) and the background of the image frame is not different then the predefined background, otherwise it will be classified as error frame. We also implemented the image histogram based NCC (Normalized Cross Correlation) comparison for video verification to speed up the system. The experimental result shows that the system is able to classify frames with 90.83% of accuracy.

A Real-time Eye Tracking Algorithm for Autostereoscopic 3-Dimensional Monitor (무안경식 3차원 모니터용 실시간 눈 추적 알고리즘)

  • Lim, Young-Shin;Kim, Joon-Seek;Joo, Hyo-Nam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.839-844
    • /
    • 2009
  • In this paper, a real-time eye tracking method using fast face detection is proposed. Most of the current eye tracking systems have operational limitations due to sensors, complicated backgrounds, and uneven lighting condition. It also suffers from slow response time which is not proper for a real-time application. The tracking performance is low under complicated background and uneven lighting condition. The proposed algorithm detects face region from acquired image using elliptic Hough transform followed by eye detection within the detected face region using Haar-like features. In order to reduce the computation time in tracking eyes, the algorithm predicts next frame search region from the information obtained in the current frame. Experiments through simulation show good performance of the proposed method under various environments.

Scene Change Detection using the Automated Threshold Estimation Algorithm

  • Ko Kyong-Cheol;Rhee Yang-Won
    • The Journal of Information Systems
    • /
    • v.14 no.3
    • /
    • pp.117-122
    • /
    • 2005
  • This paper presents a method for detecting scene changes in video sequences, in which the $chi^{2}$-test is modified by imposing weights according to NTSC standard. To automatically determine threshold values for scene change detection, the proposed method utilizes the frame differences that are obtained by the weighted $chi^{2}$-test. In the first step, the mean and the standard deviation of the difference values are calculated, and then, we subtract the mean difference value from each difference value. In the next step, the same process is performed on the remained difference values, mean-subtracted frame differences, until the stopping criterion is satisfied. Finally, the threshold value for scene change detection is determined by the proposed automatic threshold estimation algorithm. The proposed method is tested on various video sources and, in the experimental results, it is shown that the proposed method is reliably estimates the thresholds and detects scene changes.

  • PDF

Trends in Online Action Detection in Streaming Videos (온라인 행동 탐지 기술 동향)

  • Moon, J.Y.;Kim, H.I.;Lee, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • Online action detection (OAD) in a streaming video is an attractive research area that has aroused interest lately. Although most studies for action understanding have considered action recognition in well-trimmed videos and offline temporal action detection in untrimmed videos, online action detection methods are required to monitor action occurrences in streaming videos. OAD predicts action probabilities for a current frame or frame sequence using a fixed-sized video segment, including past and current frames. In this article, we discuss deep learning-based OAD models. In addition, we investigated OAD evaluation methodologies, including benchmark datasets and performance measures, and compared the performances of the presented OAD models.

Video Saliency Detection Using Bi-directional LSTM

  • Chi, Yang;Li, Jinjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2444-2463
    • /
    • 2020
  • Significant detection of video can more rationally allocate computing resources and reduce the amount of computation to improve accuracy. Deep learning can extract the edge features of the image, providing technical support for video saliency. This paper proposes a new detection method. We combine the Convolutional Neural Network (CNN) and the Deep Bidirectional LSTM Network (DB-LSTM) to learn the spatio-temporal features by exploring the object motion information and object motion information to generate video. A continuous frame of significant images. We also analyzed the sample database and found that human attention and significant conversion are time-dependent, so we also considered the significance detection of video cross-frame. Finally, experiments show that our method is superior to other advanced methods.

Voiced-Unvoiced-Silence Detection Algorithm using Perceptron Neural Network (퍼셉트론 신경회로망을 사용한 유성음, 무성음, 묵음 구간의 검출 알고리즘)

  • Choi, Jae-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.237-242
    • /
    • 2011
  • This paper proposes a detection algorithm for each section which detects the voiced section, unvoiced section, and the silence section at each frame using a multi-layer perceptron neural network. First, a power spectrum and FFT (fast Fourier transform) coefficients obtained by FFT are used as the input to the neural network for each frame, then the neural network is trained using these power spectrum and FFT coefficients. In this experiment, the performance of the proposed algorithm for detection of the voiced section, unvoiced section, and silence section was evaluated based on the detection rates using various speeches, which are degraded by white noise and used as the input data of the neural network. In this experiment, the detection rates were 92% or more for such speech and white noise when training data and evaluation data were the different.

Robust Speech Endpoint Detection in Noisy Environments for HRI (Human-Robot Interface) (인간로봇 상호작용을 위한 잡음환경에 강인한 음성 끝점 검출 기법)

  • Park, Jin-Soo;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.147-156
    • /
    • 2013
  • In this paper, a new speech endpoint detection method in noisy environments for moving robot platforms is proposed. In the conventional method, the endpoint of speech is obtained by applying an edge detection filter that finds abrupt changes in the feature domain. However, since the feature of the frame energy is unstable in such noisy environments, it is difficult to accurately find the endpoint of speech. Therefore, a novel feature extraction method based on the twice-iterated fast fourier transform (TIFFT) and statistical models of speech is proposed. The proposed feature extraction method was applied to an edge detection filter for effective detection of the endpoint of speech. Representative experiments claim that there was a substantial improvement over the conventional method.