• Title/Summary/Keyword: frame detection

Search Result 920, Processing Time 0.027 seconds

A Study of Scene Transition Detection Using Minimizes The Number of The Frame Comparison from Compressed MPEG Videos. (압축된 MPEG 비디오에서 프레임 비교횟수를 최소화 하는 장면전환 검출에 관한 연구)

  • Han, Kang-Woo;Lee, Jeong-Bae;Lee, Jong-Woock;Kim, Dae-Eung
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.381-382
    • /
    • 2007
  • 대분분의 장면전환 검출방법은 복호화에 의한 연산량이 많고, 동영상의 매 프레임을 비교함으로 시간이 많이 소요되는 순차검색 방법이다. 이러한 문제를 해결하기 위해 압축 영역에서 시간적으로 표본화 하는 비 순차검색 방법들을 제안하였다. 비 순차검색방법은 동영상을 표본화 하는 검객간격이 중요한데 본 논문에서는 전체 동영상의 비교회수를 최소화하는 최적화된 검색간격을 구하고, 구한 검색간격을 사용하여 비 순차검색알고리즘을 제안한다. 제안한 알고리즘의 성능을 분석하기 위해 기존의 방법과 비교하여 성능의 우수성을 실험을 통해 분석하였다.

Algorithm Implementation for Detection and Tracking of Ships Using FMCW Radar (FMCW Radar를 이용한 선박 탐지 및 추적 기법 구현)

  • Hong, Dan-Bee;Yang, Chan-Su
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study focuses on a ship detection and tracking method using Frequency Modulated Continuous Wave (FMCW) radar used for horizontal surveillance. In general, FMCW radar can play an important role in maritime surveillance, because it has many advantages such as low warm-up time, low power consumption, and its all weather performance. In this paper, we introduce an effective method for data and signal processing of ship's detecting and tracking using the X-band radar. Ships information was extracted using an image-based processing method such as the land masking and morphological filtering with a threshold for a cycle data merged from raw data (spoke data). After that, ships was tracked using search-window that is ship's expected rectangle area in the next frame considering expected maximum speed (19 kts) and interval time (5 sec). By using this method, the tracking results for most of the moving object tracking was successful and those results were compared with AIS (Automatic Identification System) for ships position. Therefore, it can be said that the practical application of this detection and tracking method using FMCW radar improve the maritime safety as well as expand the surveillance coverage cost-effectively. Algorithm improvements are required for an enhancement of small ship detection and tracking technique in the future.

An Efficient Dead Pixel Detection Algorithm Implementation for CMOS Image Sensor (CMOS 이미지 센서에서의 효율적인 불량화소 검출을 위한 알고리듬 및 하드웨어 설계)

  • An, Jee-Hoon;Shin, Seung-Gi;Lee, Won-Jae;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.55-62
    • /
    • 2007
  • This paper proposes a defective pixel detection algorithm and its hardware structure for CCD/CMOS image sensor. In previous algorithms, the characteristics of image have not been considered. Also, some algorithms need quite a time to detect defective pixels. In order to make up for those disadvantages, the proposed defective pixel detection method detects defective pixels efficiently by considering the edges in the image and verifies them using several frames while checking scene-changes. Whenever scene-change is occurred, potentially defective pixels are checked and confirmed whether it is defective or not. Test results showed that the correct detection rate in a frame was increased 6% and the defective pixel verification time was decreased 60%. The proposed algorithm was implemented with verilog HDL. The edge indicator in color interpolation block was reused. Total logic gate count was 5.4k using 0.25um CMOS standard cell library.

Robust Vision Based Algorithm for Accident Detection of Crossroad (교차로 사고감지를 위한 강건한 비젼기반 알고리즘)

  • Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.117-130
    • /
    • 2011
  • The purpose of this study is to produce a better way to detect crossroad accidents, which involves an efficient method to produce background images in consideration of object movement and preserve/demonstrate the candidate accident region. One of the prior studies proposed an employment of traffic signal interval within crossroad to detect accidents on crossroad, but it may cause a failure to detect unwanted accidents if any object is covered on an accident site. This study adopted inverse perspective mapping to control the scale of object, and proposed different ways such as producing robust background images enough to resist surrounding noise, generating candidate accident regions through information on object movement, and by using edge information to preserve and delete the candidate accident region. In order to measure the performance of proposed algorithm, a variety of traffic images were saved and used for experiment (e.g. recorded images on rush hours via DVR installed on crossroad, different accident images recorded in day and night rainy days, and recorded images including surrounding noise of lighting and shades). As a result, it was found that there were all 20 experiment cases of accident detected and actual effective rate of accident detection amounted to 76.9% on average. In addition, the image processing rate ranged from 10~14 frame/sec depending on the area of detection region. Thus, it is concluded that there will be no problem in real-time image processing.

Comparative Study on Feature Extraction Schemes for Feature-based Structural Displacement Measurement (특징점 추출 기법에 따른 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.74-82
    • /
    • 2024
  • In this study, feature point detection and displacement measurement performance depending on feature extraction algorithms were compared and analyzed according to environmental changes and target types in the feature point-based displacement measurement algorithm. A three-story frame structure was designed for performance evaluation, and the displacement response of the structure was digitized into FHD (1920×1080) resolution. For performance analysis, the initial measurement distance was set to 10m, and increased up to 40m with an increment of 10m. During the experiments, illuminance was fixed to 450lux or 120lux. The artificial and natural targets mounted on the structure were set as regions of interest and used for feature point detection. Various feature detection algorithms were implemented for performance comparisons. As a result of the feature point detection performance analysis, the Shi-Tomasi corner and KAZE algorithm were found that they were robust to the target type, illuminance change, and increase in measurement distance. The displacement measurement accuracy using those two algorithms was also the highest. However, when using natural targets, the displacement measurement accuracy is lower than that of artificial targets. This indicated the limitation in extracting feature points as the resolution of the natural target decreased as the measurement distance increased.

Development of a Passive Infrared Detector Algorithm for the Stop-line Detector of a Signalized Intersection (신호교차로의 정지선 검지기를 위한 수동형 적외선 검지기 알고리즘 개발(점유시간을 중심으로))

  • Jeong Sok-Min;Lee Seung-Hwan;Kim Nam-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.25-40
    • /
    • 2003
  • The purpose of this thesis is development of detection algorithm for stop-line detector. Detail detection area is set in basing detection area($1.8{\times}4.0m$) and traffic information(volume, occupancy, nonoccupancy) is collected by passive infrared detector at designing detection area. The basis detection area($1.8{\times}4.0m$) is named existing PIR and detection area applied on development algorithm is named proposal PIR. The proposal PIR is collected data such volume, occupancy, nonoccupancy, speed and lane change, but this thesis is limited to evaluate for volume, occupancy and nonoccupancy The procedure and each step of being developed algorithm is described in the next (1) The detection area of proposal PIR is made up of 2 of $1.8{\times}0.6m$ size(the detection area is named 1 and 3) and 1 of $1.8{\times}1.78m$ size(the detection area is named 2) (2) The image detection area is set on monitor to analyze outdoor photographing data then video frame analysis has been done by analyzer. (3) The occupancy, nonoccupancy and speed data of vehicle have been collected with the detection area 1 and 3 and lane change has been collected with combination of detection area 1, 2 and 3 The MAD and MAPE have been utilized to being compared with volume, occupancy and nonoccupancy for the field application and evaluation of a algorithm As the result, the proposal PIR data have been identified superior to the existing PIR data and the effect has been improved its information(volume, occupancy and nonoccupancy)

  • PDF

Video retrieval method using non-parametric based motion classification (비-파라미터 기반의 움직임 분류를 통한 비디오 검색 기법)

  • Kim Nac-Woo;Choi Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.1-11
    • /
    • 2006
  • In this paper, we propose the novel video retrieval algorithm using non-parametric based motion classification in the shot-based video indexing structure. The proposed system firstly gets the key frame and motion information from each shot segmented by scene change detection method, and then extracts visual features and non-parametric based motion information from them. Finally, we construct real-time retrieval system supporting similarity comparison of these spatio-temporal features. After the normalized motion vector fields is created from MPEG compressed stream, the extraction of non-parametric based motion feature is effectively achieved by discretizing each normalized motion vectors into various angle bins, and considering a mean, a variance, and a direction of these bins. We use the edge-based spatial descriptor to extract the visual feature in key frames. Experimental evidence shows that our algorithm outperforms other video retrieval methods for image indexing and retrieval. To index the feature vectors, we use R*-tree structures.

Video Segmentation using the Automated Threshold Decision Algorithm (비디오 분할을 위한 자동 임계치 결정 알고리즘)

  • Ko Kyong-Cheol;Lee Yang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.65-74
    • /
    • 2005
  • This Paper Propose a robust scene change detection technique that use the weighted chi-square test and the automated threshold-decision algorithm. The weighted chi-test can subdivide the difference values of individual color channels by calculating the color intensities according to mSC standard, and it can detect the scene change by joining the weighted color intensities to the predefined chi-test which emphasize the comparative color difference values. The automated decision algorithm uses the difference values of frame-to-frame that was obtained by the weighted chi-test. In the first step, The average of total difference value and standard deviation value is calculated and then, subtract the mean value from the each difference values. In the next step, the same process is performed on the remained difference value. The propose method is tested on various sources and in the experimental results, it is shown that the Proposed method is efficiently estimates the thresholds and reliably detects scene changes.

  • PDF

Shot Motion Classification Using Partial Decoding of INTRA Picture in Compressed Video (압축비디오에서 인트라픽쳐 부분 복호화를 이용한 샷 움직임 분류)

  • Kim, Kang-Wook;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.858-865
    • /
    • 2011
  • In order to allow the user to efficiently browse, select, and retrieve a desired video part without having to deal directly with GBytes of compressed data, classification of shot motion characteristic has to be carried out as a preparation for such user interaction. The organization of video information for video database requires segmentation of a video into its constituent shots and their subsequent characterization in terms of content and camera movement in shot. In order to classify shot motion, it is a conventional way to use element of motion vector. However, there is a limit to estimate global camera motion because the way that uses motion vectors only represents local movement. For shot classification in terms of motion information, we propose a new scheme consisting of partial decoding of INTRA pictures and comparing the x, y displacement vector curve between the decoded I-frame and next P-frame in compressed video data.

Multi-View Wyner-Ziv Video Coding Based on Spatio-temporal Adaptive Estimation (시공간 적응적인 예측에 기초한 다시점 위너-지브 비디오 부호화 기법)

  • Lee, Beom-yong;Kim, Jin-soo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.6
    • /
    • pp.9-18
    • /
    • 2016
  • This paper proposes a multi-view Wyner-Ziv Video coding scheme based on spatio-temporal adaptive estimation. The proposed algorithm is designed to search for a better estimated block with joint bi-directional motion estimation by introducing weights between temporal and spatial directions, and by classifying effectively the region of interest blocks, which is based on the edge detection and the synthesis, and by selecting the reference estimation block from the effective motion vector analysis. The proposed algorithm exploits the information of a single frame viewpoint and adjacent frame viewpoints, simultaneously and then generates adaptively side information in a variety of closure, and reflection regions to have a better performance. Through several simulations with multi-view video sequences, it is shown that the proposed algorithm performs visual quality improvement as well as bit-rate reduction, compared to the conventional methods.