• Title/Summary/Keyword: frame detection

Search Result 920, Processing Time 0.028 seconds

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

Fall Situation Recognition by Body Centerline Detection using Deep Learning

  • Kim, Dong-hyeon;Lee, Dong-seok;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • In this paper, a method of detecting the emergency situations such as body fall is proposed by using color images. We detect body areas and key parts of a body through a pre-learned Mask R-CNN in the images captured by a camera. Then we find the centerline of the body through the joint points of both shoulders and feet. Also, we calculate an angle to the center line and then calculate the amount of change in the angle per hour. If the angle change is more than a certain value, then it is decided as a suspected fall. Also, if the suspected fall state persists for more than a certain frame, then it is determined as a fall situation. Simulation results show that the proposed method can detect body fall situation accurately.

Dynamic Tracking Aggregation with Transformers for RGB-T Tracking

  • Xiaohu, Liu;Zhiyong, Lei
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.80-88
    • /
    • 2023
  • RGB-thermal (RGB-T) tracking using unmanned aerial vehicles (UAVs) involves challenges with regards to the similarity of objects, occlusion, fast motion, and motion blur, among other issues. In this study, we propose dynamic tracking aggregation (DTA) as a unified framework to perform object detection and data association. The proposed approach obtains fused features based a transformer model and an L1-norm strategy. To link the current frame with recent information, a dynamically updated embedding called dynamic tracking identification (DTID) is used to model the iterative tracking process. For object association, we designed a long short-term tracking aggregation module for dynamic feature propagation to match spatial and temporal embeddings. DTA achieved a highly competitive performance in an experimental evaluation on public benchmark datasets.

Abnormal Object Detection-based Video Synopsis Framework in Multiview Video (다시점 영상에 대한 이상 물체 탐지 기반 영상 시놉시스 프레임워크)

  • Ingle, Palash Yuvraj;Yu, Jin-Yong;Kim, Young-Gab
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.213-216
    • /
    • 2022
  • There has been an increase in video surveillance for public safety and security, which increases the video data, leading to analysis, and storage issues. Furthermore, most surveillance videos contain an empty frame of hours of video footage; thus, extracting useful information is crucial. The prominent framework used in surveillance for efficient storage and analysis is video synopsis. However, the existing video synopsis procedure is not applicable for creating an abnormal object-based synopsis. Therefore, we proposed a lightweight synopsis methodology that initially detects and extracts abnormal foreground objects and their respective backgrounds, which is stitched to construct a synopsis.

Moving Pigs Detection in Video Monitoring Applications (비디오 모니터링 응용에서 움직인 돼지 탐지)

  • Yu, SeungHyun;Suh, Yooil;Son, JunHyung;Lee, SeJun;Chung, Yongwha;Park, Daihee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.379-381
    • /
    • 2021
  • 비디오 모니터링은 자율주행차뿐만 아니라 농장 내 병든 동물 탐지 등과 같은 스마트팜 분야에서도 사람을 대신하여 24시간 연속 모니터링할 수 있는 중요한 응용 분야이다. 본 논문에서는 비디오 모니터링의 계산양을 줄이면서도 혼잡한 돈방에서 빠르게 움직이는 돼지들을 정확히 탐지하기 위해 CNN 기반 객체 탐지기의 정확도를 고려한 방법을 제안한다. 즉, 연속되는 비디오 영상에서 key frame을 먼저 추출한 후, 비디오의 특성인 움직임 정보가 포함된 영상에서 GMM을 이용하여 움직인 돼지와 움직이지 않은 돼지의 위치를 구분하고, 최종적으로 YOLOv4를 적용하여 움직인 돼지와 움직이지 않은 돼지를 탐지한다. 돈사에서 촬영된 비디오 데이터로 실험한 결과, 제안 방법은 효과적으로 움직인 돼지를 탐지할 수 있음을 확인하였다.

Finding focused key frames of a given meaning on video data (영상의 특정 의미를 반영하는 Key Frame의 추출 방법)

  • Ha, Jong-Woo;Noh, Jung-Dam;Yoon, Soungwoong;Kim, Min-Soo;Ahn, Chang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.85-88
    • /
    • 2022
  • 영상을 구성하는 프레임 중에 키프레임은 일반적으로 영상 정보를 효과적으로 요약하거나 용이한 분석을 위해 선정된다. 화상이 가진 의미는 인물/사물 등의 객체탐지를 통해 추출되는데, 기존의 키프레임 관련 연구는 영상이 가지는 의미를 반영하는 키프레임을 찾아내기 어렵다. 본 논문에서는 영상이 가지는 특정 의미가 있다고 할 때 이를 반영하는 키프레임을 효과적으로 추출하는 방법을 실험적으로 탐구하였다. 구체적으로 영상을 통할하는 의미를 피로라고 가정하고 영상의 졸음 인식 관련 연구에 사용되는 DDD 데이터셋을 이용하여 효과적인 키프레임 추출 기법을 적용해 보았으며, 실험 결과 졸음이라는 특정 정보에 대한 해석을 도울 수 있는 의미 있는 요약을 제공하는 키프레임들을 효과적으로 추출하는 분석 기법을 찾아낼 수 있었다.

  • PDF

Video anomaly detection using multi-frame prediction error (다중 프레임 예측 에러를 활용한 영상 이상 탐지)

  • Kim, Yujun;Kim, Young-Gab
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.498-500
    • /
    • 2022
  • 공공 안전을 위한 영상 감시 시스템이 증가함에 따라 CCTV 관제사가 관제해야 할 영상의 수가 증가하고 있다. 점점 증가하는 관제 영상 수로 인해 CCTV 관제사는 수많은 영상 사이에서 발생하는 살인, 강도, 폭력 등 위급한 이상 상황을 놓치는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위해 최근에는 영상에서 발생하는 이상 상황을 자동으로 탐지하고 CCTV 관제사에게 알려 관제 효율을 향상시키는 연구가 진행되고 있다. 본 논문은 영상에서 발생하는 이상 상황을 자동으로 탐지하기 위해 예측 기반 이상 탐지 방법에 다중 프레임 예측 에러를 활용해서 영상 이상 탐지 정확도를 향상시키는 방법을 제안한다. 결과적으로 제안한 방법을 사용함으로써 프레임 레벨 AUC가 Ped2 데이터 셋에서 92.70%에서 94.56%, Avenue 데이터셋에서 87.37%에서 89.17%로 상승하였다.

The Effect of Background on Object Recognition of Vision AI (비전 AI의 객체 인식에 배경이 미치는 영향)

  • Wang, In-Gook;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.127-128
    • /
    • 2023
  • The construction industry is increasingly adopting vision AI technologies to improve efficiency and safety management. However, the complex and dynamic nature of construction sites can pose challenges to the accuracy of vision AI models trained on datasets that do not consider the background. This study investigates the effect of background on object recognition for vision AI in construction sites by constructing a learning dataset and a test dataset with varying backgrounds. Frame scaffolding was chosen as the object of recognition due to its wide use, potential safety hazards, and difficulty in recognition. The experimental results showed that considering the background during model training significantly improved the accuracy of object recognition.

  • PDF

Shot Change Detection Algorithm Using Minimum Pixels of Video Frame (비디오 프레임의 최소 화소를 이용한 장면 전환 검출 기술)

  • Won-Hee Kim;Kwang-Seok Moon;Jong-Nam Kim
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.145-148
    • /
    • 2008
  • 장면 전환 검출은 대용량 비디오 데이터의 효과적인 관리를 위해서 사용되는 기술로서 현재까지 비디오 프레임의 크기를 대폭 축소시킨 환경에서의 연구는 미미하다. 따라서 본 논문에서는 비디오 프레임의 최소 화소를 이용한 장면 전환 검출 기술을 제안한다. 장면 전환 검출을 위한 특징값 추출 요소로 가중치 분산을 사용하였고, 가변 구간 참조를 통한 적응적인 임계값을 설정하였다. 실험을 통해서 기존의 방법들보다 precision에서 2~20.4%, recall에서 3~18.2%, F1에서 1.1~19.3% 향상된 것을 확인하였고, 비디오 데이터 화소수를 1/256로 축소하여 실험한 결과 기존의 방법들보다 검출률이 월등하게 향상된 것을 알 수 있었다. 제안하는 방법은 계산량 감소를 통한 고속 처리를 가능하게 하여 다양한 소프트웨어 및 하드웨어 플랫폼에서의 고속 장면 전환 검출에 유용하게 사용될 수 있다.

A Method Sustaining Frame Process Rate on Object Detection of Bayesian Modeling (베이시안 모델링 물체 검출에 관한 초당 프레임 처리량 유지 기법)

  • Su-Kwang Shin;Hee-Yong Youn
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.149-152
    • /
    • 2008
  • 사생활 보호에 대한 인식이 커지고, 인터넷 시대에 접어들면서 네트워크 기반의 보안시스템의 개발이 활발하다. 실시간 비디오 카메라를 통한 움직이는 물체를 검출하기 위해서는 불필요한 잡음이나 조명의 변화에 대처해야 한다. 이러한 많은 요소들을 고려하여 움직이는 물체를 검출하려면 많은 계산 복잡도를 가지게 된다. 또한, 카메라의 영상크기가 증가함에 따라 움직이는 물체를 검출하기 위해서 더 많은 계산 복잡도를 가지게 된다. 본 논문에서는 기존의 통상적인 움직임 검출방법 과 적응적 배경방식인 '물체 검출을 위한 동적인 장면의 베이시안 모델링 기반 물체 검출 방법'을 분석하고, 실시간으로 처리되는 동적 비디오 영상에서 이동 물체를 검출하는 과정에서의 영상의 크기가 커지고, 이동하는 물체의 개수가 많아짐에 따라 발생되는 계산의 복잡도를 'CPU 성능과 영상 resize 를 이용한 계산 복잡도 감소 방법'을 통해 초당 프레임 처리속도를 유지시키는 방법을 제시한다.