• Title/Summary/Keyword: frame detection

Search Result 920, Processing Time 0.026 seconds

Improving the Accuracy of Image Matching using Various Outlier Removal Algorithms (다양한 오정합 제거 알고리즘을 이용한 영상정합의 정확도 향상)

  • Lee, Yong-Il;Kim, Jun-Chul;Lee, Young-Ran;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.667-675
    • /
    • 2009
  • Image matching is widely applied in image application areas, such as remote sensing and GIS. In general, the initial set of matching points always includes outlier which affect the accuracy of image matching. The purpose of this paper is to develop a robust approach for outlier detection and removal in order to keep accuracy in image matching applications. In this paper we use three automatic outlier detection techniques of backward matching and affine transformation, and RANSAC(RANdom SAmple Consensus) algorithm. Moreover, we calculate overlapping apply and steps block-based processing for fast and efficient image matching in pre-processing steps. The suggested approach in this paper has been applied to real frame image pairs and the results have been analyzed in terms of the robustness and the efficiency.

An improved modal strain energy method for structural damage detection, 2D simulation

  • Moradipour, Parviz;Chan, Tommy H.T.;Gallag, Chaminda
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.105-119
    • /
    • 2015
  • Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

Multi-strategy structural damage detection based on included angle of vectors and sparse regularization

  • Liu, Huanlin;Yu, Ling;Luo, Ziwei;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.415-424
    • /
    • 2020
  • Recently, many structural damage detection (SDD) methods have been proposed to monitor the safety of structures. As an important modal parameter, mode shape has been widely used in SDD, and the difference of vectors was adopted based on sensitivity analysis and mode shapes in the existing studies. However, amplitudes of mode shapes in different measured points are relative values. Therefore, the difference of mode shapes will be influenced by their amplitudes, and the SDD results may be inaccurate. Focus on this deficiency, a multi-strategy SDD method is proposed based on the included angle of vectors and sparse regularization in this study. Firstly, inspired by modal assurance criterion (MAC), a relationship between mode shapes and changes in damage coefficients is established based on the included angle of vectors. Then, frequencies are introduced for multi-strategy SDD by a weighted coefficient. Meanwhile, sparse regularization is applied to improve the ill-posedness of the SDD problem. As a result, a novel convex optimization problem is proposed for effective SDD. To evaluate the effectiveness of the proposed method, numerical simulations in a planar truss and experimental studies in a six-story aluminum alloy frame in laboratory are conducted. The identified results indicate that the proposed method can effectively reduce the influence of noises, and it has good ability in locating structural damages and quantifying damage degrees.

Geometrical Feature-Based Detection of Pure Facial Regions (기하학적 특징에 기반한 순수 얼굴영역 검출기법)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.773-779
    • /
    • 2003
  • Locating exact position of facial components is a key preprocessing for realizing highly accurate and reliable face recognition schemes. In this paper, we propose a simple but powerful method for detecting isolated facial components such as eyebrows, eyes, and a mouth, which are horizontally oriented and have relatively dark gray levels. The method is based on the shape-resolving locally optimum thresholding that may guarantee isolated detection of each component. We show that pure facial regions can be determined by grouping facial features satisfying simple geometric constraints on unique facial structure. In the test for over 1000 images in the AR -face database, pure facial regions were detected correctly for each face image without wearing glasses. Very few errors occurred in the face images wearing glasses with a thick frame because of the occluded eyebrow -pairs. The proposed scheme may be best suited for the later stage of classification using either the mappings or a template matching, because of its capability of handling rotational and translational variations.

Pedestrian Counting System based on Average Filter Tracking for Measuring Advertisement Effectiveness of Digital Signage (디지털 사이니지의 광고효과 측정을 위한 평균 필터 추적 기반 유동인구 수 측정 시스템)

  • Kim, Kiyong;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.493-505
    • /
    • 2016
  • Among modern computer vision and video surveillance systems, the pedestrian counting system is a one of important systems in terms of security, scheduling and advertising. In the field of, pedestrian counting remains a variety of challenges such as changes in illumination, partial occlusion, overlap and people detection. During pedestrian counting process, the biggest problem is occlusion effect in crowded environment. Occlusion and overlap must be resolved for accurate people counting. In this paper, we propose a novel pedestrian counting system which improves existing pedestrian tracking method. Unlike existing pedestrian tracking method, proposed method shows that average filter tracking method can improve tracking performance. Also proposed method improves tracking performance through frame compensation and outlier removal. At the same time, we keep various information of tracking objects. The proposed method improves counting accuracy and reduces error rate about S6 dataset and S7 dataset. Also our system provides real time detection at the rate of 80 fps.

Traffic Sign Detection Using The HSI Eigen-color model and Invariant Moments (HSI 고유칼라 모델과 불변 모멘트를 이용한 교통 표지판 검출 방법)

  • Kim, Jong-Bae;Park, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.41-51
    • /
    • 2010
  • In the research for driver assistance systems, traffic sign information to the driver must be a very important information. Therefore, the detection system of traffic signs located on the road should be able to handel real-time. To detect the traffic signs, color and shape of traffic signs is to use the information after images obtained using the CCD camera. In the road environment, however, using color information to detect traffic sings will cause many problems due to changes of weather and environmental factors. In this paper, to solve it, the candidate traffic sign regions are detected from road images obtained in a variety of the illumination changes using the HSI eign-color model. And then, using the invariant moment-based SVM classifier to detect traffic signs are proposed. Experimental results show that, traffic sign detection rate is 91%, and the processing time per frame is 0.38sec. Proposed method is useful for real-time intelligent traffic guidance systems can be applied.

Anomalous Event Detection in Traffic Video Based on Sequential Temporal Patterns of Spatial Interval Events

  • Ashok Kumar, P.M.;Vaidehi, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.169-189
    • /
    • 2015
  • Detection of anomalous events from video streams is a challenging problem in many video surveillance applications. One such application that has received significant attention from the computer vision community is traffic video surveillance. In this paper, a Lossy Count based Sequential Temporal Pattern mining approach (LC-STP) is proposed for detecting spatio-temporal abnormal events (such as a traffic violation at junction) from sequences of video streams. The proposed approach relies mainly on spatial abstractions of each object, mining frequent temporal patterns in a sequence of video frames to form a regular temporal pattern. In order to detect each object in every frame, the input video is first pre-processed by applying Gaussian Mixture Models. After the detection of foreground objects, the tracking is carried out using block motion estimation by the three-step search method. The primitive events of the object are represented by assigning spatial and temporal symbols corresponding to their location and time information. These primitive events are analyzed to form a temporal pattern in a sequence of video frames, representing temporal relation between various object's primitive events. This is repeated for each window of sequences, and the support for temporal sequence is obtained based on LC-STP to discover regular patterns of normal events. Events deviating from these patterns are identified as anomalies. Unlike the traditional frequent item set mining methods, the proposed method generates maximal frequent patterns without candidate generation. Furthermore, experimental results show that the proposed method performs well and can detect video anomalies in real traffic video data.

Fast Detection of Video Copy Using Spatio-Temporal Group Feature (시공간 그룹특징을 사용한 동영상 복사물의 고속 검색)

  • Jeong, Jae Hyup;Lee, Jun Woo;Kang, Jong Wook;Jeong, Dong Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.64-73
    • /
    • 2012
  • In this paper, we propose a method to search for identical videos. The proposed method is spatio-temporal group feature fingerprinting. Frame of video is extracted from fixed rate method and is partitioned into vertical group and horizontal group. Descriptor is made of each group feature that is extracted from binary fingerprinting. Next, use descriptor of original video to build a two type of fingerprinting database and matching with query video. To efficient and effective video copy detection, method have high robustness, independence, matching speed. In proposed method, group feature have high robustness and independence in variable modification of video. Building a original fingerprinting database is able to fast matching with query video. The proposed method shows performance improvement in variable modifications in comparison to the existing methods. Especially, very singular performance in speed improvement is great advantage of this paper.

A Novel Implementation of Rotation Detection Algorithm using a Polar Representation of Extreme Contour Point based on Sobel Edge

  • Han, Dong-Seok;Kim, Hi-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.800-807
    • /
    • 2016
  • We propose a fast algorithm using Extreme Contour Point (ECP) to detect the angle of rotated images, is implemented by rotation feature of one covered frame image that can be applied to correct the rotated images like in image processing for real time applications, while CORDIC is inefficient to calculate various points like high definition image since it is only possible to detect rotated angle between one point and the other point. The two advantages of this algorithm, namely compatibility to images in preprocessing by using Sobel edge process for pattern recognition. While the other one is its simplicity for rotated angle detection with cyclic shift of two $1{\times}n$ matrix set without complexity in calculation compared with CORDIC algorithm. In ECP, the edge features of the sample image of gray scale were determined using the Sobel Edge Process. Then, it was subjected to binary code conversion of 0 or 1 with circular boundary to constitute the rotation in invariant conditions. The results were extracted to extreme points of the binary image. Its components expressed not just only the features of angle ${\theta}$ but also the square of radius $r^2$ from the origin of the image. The detected angle of this algorithm is limited only to an angle below 10 degrees but it is appropriate for real time application because it can process a 200 degree with an assumption 20 frames per second. ECP algorithm has an O ($n^2$) in Big O notation that improves the execution time about 7 times the performance if CORDIC algorithm is used.

Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device

  • Karami, Kaveh;Nagarajaiah, Satish;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.955-982
    • /
    • 2016
  • Recent studies integrating vibration control and structural health monitoring (SHM) use control devices and control algorithms to enable system identification and damage detection. In this study real-time SHM is used to enhance structural vibration control and reduce damage. A newly proposed control algorithm, including integrated real-time SHM and semi-active control strategy, is presented to mitigate both damage and seismic response of the main structure under strong seismic ground motion. The semi-active independently variable stiffness (SAIVS) device is used as semi-active control device in this investigation. The proper stiffness of SAIVS device is obtained using a new developed semi-active control algorithm based on real-time damage tracking of structure by damage detection algorithm based on identified system Markov parameters (DDA/ISMP) method. A three bay five story steel braced frame structure, which is equipped with one SAIVS device at each story, is employed to illustrate the efficiency of the proposed algorithm. The obtained results show that the proposed control algorithm could significantly decrease damage in most parts of the structure. Also, the dynamic response of the structure is effectively reduced by using the proposed control algorithm during four strong earthquakes. In comparison to passive on and off cases, the results demonstrate that the performance of the proposed control algorithm in decreasing both damage and dynamic responses of structure is significantly enhanced than the passive cases. Furthermore, from the energy consumption point of view the maximum and the cumulative control force in the proposed control algorithm is less than the passive-on case, considerably.