Journal of the Korea Institute of Information and Communication Engineering
/
v.16
no.7
/
pp.1470-1476
/
2012
Performance of a video browser greatly depends on the performance of scene change detection for the efficient retrieval and storage of the video contents which are major data in a current contents management system. In this paper we propose a new scene change detection method using Mean Difference Histogram of each frame section which improves accuracy of scene change detection as well as reduces the frequency of miss detection and fault detection of gradual scene change which is one of critical problem of the conventional histogram-based techniques.
Although the object detection accuracy with still images has been significantly improved with the advance of deep learning techniques, the object detection problem with video data remains as a challenging problem due to the real-time requirement and accuracy drop with occlusion. In this research, we propose a method in pig detection for video monitoring environment. First, we determine a motion, from a video data obtained from a tilted-down-view camera, based on the average size of each pig at each location with the training data, and extract key frames based on the motion information. For each key frame, we then apply YOLO, which is known to have a superior trade-off between accuracy and execution speed among many deep learning-based object detectors, in order to get pig's bounding boxes. Finally, we merge the bounding boxes between consecutive key frames in order to reduce false positive and negative cases. Based on the experiment results with a video data set obtained from a pig farm, we confirmed that the pigs could be detected with an accuracy of 97% at a processing speed of 37fps.
KIM, Do-Young;Kang, In-Yeong;Kim, Yeonsu;Choi, Jin-Won;Park, Goo-man
Annual Conference of KIPS
/
2021.11a
/
pp.723-726
/
2021
현재 단일 이미지에서 Object Detection 성능은 매우 좋은 편이다. 하지만 동영상에서는 처리 속도가 너무 느리고 임베디드 시스템에서는 real-time이 힘든 상황이다. 연구 논문에서는 하이엔드 GPU에서 다른 기능 없이 YOLO만 구동했을 때 real-time이 가능하다고 하지만 실제 사용자들은 상대적으로 낮은 사양의 GPU를 사용하거나 CPU를 사용하기 때문에 일반적으로는 자연스러운 real-time을 하기가 힘들다. 본 논문에서는 이러한 제한점을 해결하고자 계산량이 많은 Object Detection model 사용을 줄이는 방안은 제시하였다. 현재 Video영상에서 Object Detection을 수행할 때 매 frame마다 YOLO모델을 구동하는 것에서 YOLO 사용을 줄임으로써 계산 효율을 높였다. 본 논문의 알고리즘은 카메라가 움직이거나 배경이 바뀌는 상황에서도 사용이 가능하다. 속도는 최소2배에서 ~10배이상까지 개선되었다.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.46
no.9
/
pp.14-24
/
2009
Memory cell array and peripheral circuits are designed for system on panel style frame buffer. Moreover, a parallel test methodology to test multiple blocks of memory cells is proposed to overcome low yield of system on panel processing technologies. It is capable of faster fault detection compared to conventional memory tests and also applicable to the tests of various embedded memories and conventional SRAMs. The various patterns of conventional test vectors can be used to enhance fault coverage. The proposed testing method is also applicable to hierarchical bit line and divided word line, one of design trends of recent memory architectures.
Park, Min-Woo;Nam, Young-Jin;Kim, Sung-Ryul;Seo, Dae-Wha;Jung, Soon-Ki
한국HCI학회:학술대회논문집
/
2008.02a
/
pp.629-634
/
2008
디지털 영상 매체들이 등장한 후부터 장면전환 검출은 영상의 편집과 검색, 요약 등 여러 작업에 적용되기 위해 활발히 연구되어 왔다. 특히 디지털 방송이 MPEG2방식으로 송신되기 시작한 이후로 이러한 연구는 더욱 활발히 진행되었다. 그 결과로 MPEG2 영상에서 장면전환을 검출하기 위해서 압축영역에서의 검출법과 비압축영역에서의 검출법이 제시되었다. 특히 압축영역에서의 장면전환 검출방법은 전체를 디코딩하지 않고 장면전환을 빠르게 검색할 수 있는 방법들이 주로 등장되었다. 하지만, 이 방법들은 정확도가 떨어지거나 속력저하가 극심한 등 여러 가지 문제를 보였다. 따라서 우리는 좀 더 빠르고 정확도가 높은 장면전환 시점 검출을 위해서 GOP의 길이와 B 프레임의 용량 변화를 이용하고자 한다. 우리의 방법은 B 프레임의 용량 변화를 이용하여 장면 전환을 보다 빠르게 검색하고 보다 높은 정확도를 위해서 GOP 길이의 변화가 심한 곳을 추가로 지정하여 정확도를 보강한다. 이러한 방법은 기존의 장면전환 검출 방법보다 빠른 해결책이 된다. 그 뿐 아니라 정확도 면에서도 만족할만한 결과를 보여주고 있다. 본 논문에서 제시한 이러한 방법은 기존의 획일적인 방법에서 벗어나 MPEG2 영상내에서 좀 더 빠르고 정확한 장면검출을 위한 새로운 아이디어를 제공한다.
Proceedings of the Korea Contents Association Conference
/
2003.11a
/
pp.281-284
/
2003
In this study, we have proposed the method of moving area detection as the preprocessing step of moving object tracking system. First, we catch the two frames which are different at time in image sequence. We obtain the moving area by using their binary differential image. In differential image, the object area of previous and current frame is present. In the tracking system, the background is changed by camera motion. So, in this case we have to decide which moving area of object is current at time. We obtain the binary edge image of current frame by applying a threshold to the output of an edge detector. Then we performed logical AND operation between the edge image and differential image. As a result of this work moving area of object can be detected.
Proceedings of the Korea Contents Association Conference
/
2009.05a
/
pp.889-894
/
2009
Accompanied by the rapid development of Computer Vision, Visual surveillance has achieved great evolution with more and more complicated processing. However there are still many problems to be resolved for robust and reliable visual surveillance, and the cast shadow occurring in motion detection process is one of them. Shadow pixels are often misclassified as object pixels so that they cause errors in localization, segmentation, tracking and classification of objects. This paper proposes a novel cast shadow removal method. As opposed to previous conventional methods, which considers pixel properties like intensity properties, color distortion, HSV color system, and etc., the proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the background scene. Then, the product of the outcomes of application determines whether the blob pixels in the foreground mask comes from object blob regions or shadow regions. The proposed method is simple but turns out practically very effective for Gaussian Mixture Model, which is verified through experiments.
In this paper, we have developed base-calling error detection program and algorithm which show the list of the genes or sequences that are suspected to contain base-calling errors. Those programs detect dubious bases in a few aspects in the process of microbial genome project. The first module detects base-calling error from the Phrap file by using contig assembly information. The second module analyzes frame shift mutation if it is originated from real mutation or artifact. Finally, in the case that there is control microbial genome annotation information, the third module extracts and shows the candidate base-calling error list by comparative genome analysis method.
Kim Soo-Hong;Kim Sung-Min;Lee Kang-Hee;Kim Yoon-Ho
The Transactions of the Korean Institute of Power Electronics
/
v.10
no.3
/
pp.296-301
/
2005
This paper proposing the use of the Instantaneous reactive power method as a harmonic detection method for a single phase active filter system. This method is to detect harmonic components through d-q frame approach. The conventional use of d-q frame approach for a 3-phase system Is extended to the single phase system. The proposed system uses a multi-level inverter for harmonic compensation and the inverter is connected to the input side without using transformers. The proposed algorithm is verified by simulation and experiment.
Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.10
/
pp.146-153
/
1990
A new 3-D segmentation-based coding technique is proposed for transmitting the motion video with reasonablly acceptable quality even at a very low bit rate. Only meaningful motion areas are extracted by using two change detection masks and a current frame is directly segmented rather than a difference frame itself so that a good quality of image can be obtained at high compression ratios. Through the experiments, the sequence of Miss America is reconstructed with visually acceptable quality at the very high compression ratio of 360:1.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.