This paper deals with a resource efficient artificial intelligence (AI) service architecture for multi-channel video streams. As an AI service, we consider the object detection model, which is the most representative for video applications. Since most object detection models are basically designed for a single channel video stream, the utilization of the additional resource for multi-channel video stream processing is inevitable. Therefore, we propose a resource efficient AI service framework, which can be associated with various AI service models. Our framework is designed based on the modular architecture, which consists of adaptive frame control (AFC) Manager, multiplexer (MUX), adaptive channel selector (ACS), and YOLO interface units. In order to run only a single YOLO process without regard to the number of channels, we propose a novel approach efficiently dealing with multi-channel input streams. Through the experiment, it is shown that the framework is capable of performing object detection service with minimum resource utilization even in the circumstance of multi-channel streams. In addition, each service can be guaranteed within a deadline.
The development of computer technology and the advancement of the technology of information and communications spread the technology of multimedia and increased the use of multimedia data with large capacity, Users can grasp the overall video data and they are able to play wanted video back. To grasp the overall video data it is necessary to offer the list of summarized video data information, In order to search video efficiently on index process of video data is essential and it is also indispensable skill, Therefore, this thesis suggested the effective method about the cut detection of frames which will become a basis of an index based on contents of video image data. This suggested method was detected as the unchanging pixel color intelligence value, classified into diagonal direction. Pixel value of color detected in each frame of video data is stored as A(i, j) matrix-i is the number of frames. j is an image height of frame. By using the stored pixel value as the method of sum of squared difference of color two frames I calculated a specified value difference between frames and detected cut quickly and exactly in case it is bigger than threshold value set in advance, To carry out on experiment on the cut detection of frames comprehensively, I experimented on many kinds of video. analyzing and comparing efficiency of the cut detection system.
The Generalized Hough Transform(GHT) is the most used algorithm for circle detection with high accuracy. However, it requires many computation time, because many different templates are applied in order to find circles of various size. In the case of circle detection and tracking in video, the classical approach applies GHT for each frame in video and thus needs much high processing time for all frames. This paper proposes the fast GHT algorithm in video, using two consecutive frames are similar. In the proposed algorithm, a change-driven method conducts GHT only when two consecutive frames have many changes, and trajectory-based method does GHT in candidate areas and with candidate radius using circles detected in a previous frame. The algorithm can reduce computation time by reducing the number of frames, the edge count, and the number of searching circles, as factors which affects the speed of GHT. Our experimental results show that the algorithm successfully detects circles with less processing time and no loss of accuracy in video acquisited by a fixed camera and a moving camera.
Journal of the Korea Society of Computer and Information
/
v.17
no.1
/
pp.71-80
/
2012
This paper proposes vehicle detection and tracking algorithm using a CCD camera. The proposed algorithm uses Haar-like wavelet edge detector to detect features of vehicle and estimates vehicle's location using calibration information of an image. After that, extract accumulated vehicle information in continuous k images to improve reliability. Finally, obtained vehicle region becomes a template image to find same object in the next continuous image using SURF(Speeded Up Robust Features). The template image is updated in the every frame. In order to reduce SURF processing time, ROI(Region of Interesting) region is limited on expended area of detected vehicle location in the previous frame image. This algorithm repeats detection and tracking progress until no corresponding points are found. The experimental result shows efficiency of proposed algorithm using images obtained on the road.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.2
/
pp.33-44
/
2010
This paper propose the structure of real-time face detection hardware architecture for robot vision processing applications. The proposed architecture is robust against illumination changes and operates at no less than 60 frames per second. It uses Modified Census Transform to obtain face characteristics robust against illumination changes. And the AdaBoost algorithm is adopted to learn and generate the characteristics of the face data, and finally detected the face using this data. This paper describes the face detection hardware structure composed of Memory Interface, Image Scaler, MCT Generator, Candidate Detector, Confidence Comparator, Position Resizer, Data Grouper, and Detected Result Display, and verification Result of Hardware Implementation with using Virtex5 LX330 FPGA of Xilinx. Verification result with using the images from a camera showed that maximum 32 faces per one frame can be detected at the speed of maximum 149 frame per second.
Kim, Dong-Min;Zhang, Shichen;Kim, Minhee;Kim, Dong-Eun
Journal of Microbiology and Biotechnology
/
v.30
no.5
/
pp.662-667
/
2020
Epidermal growth factor receptor (EGFR) mutations are not only genetic markers for diagnosis but also biomarkers of clinical-response against tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC). Among the EGFR mutations, the in-frame deletion mutation in EGFR exon 19 kinase domain (EGFR exon 19-del) is the most frequent mutation, accounting for about 45% of EGFR mutations in NSCLCs. Development of sensitive method for detecting the EGFR mutation is highly required to make a better screening for drug-response in the treatment of NSCLC patients. Here, we developed a fluorometric tandem gene amplification assay for sensitive detection of low-abundance EGFR exon 19-del mutant genomic DNA. The method consists of pre-amplification with PCR, thermal cycling of ligation by Taq ligase, and subsequent rolling circle amplification (RCA). PCR-amplified DNA from genomic DNA samples was used as splint DNA to conjugate both ends of linear padlock DNA, generating circular padlock DNA template for RCA. Long stretches of ssDNA harboring multiple copies of G-quadruplex structure was generated in RCA and detected by thioflavin T (ThT) fluorescence, which is specifically intercalated into the G-quadruplex, emitting strong fluorescence. Sensitivity of tandem gene amplification assay for detection of the EGFR exon 19-del from gDNA was as low as 3.6 pg, and mutant gDNA present in the pooled normal plasma was readily detected as low as 1% fraction. Hence, fluorometric detection of low-abundance EGFR exon 19 deletion mutation using tandem gene amplification may be applicable to clinical diagnosis of NSCLC patients with appropriate TKI treatment.
In this paper, we propose a small target detection algorithm for FLIR image with complex background. First, we compute the motion information of target from the difference between the current frame and the created background image. However, the slow speed of target cause that it has the very low gray level value in the difference image. To improve the gray level value, we perform the local gamma correction for difference image. So, the detection index is computed by using statistical characteristics in the improved image and then we chose the lowest detection index a true target. Experimental results show that the proposed method has significantly the good detection performance.
In detection of a scene change of the moving pictures which has massive information capacity, the temporal sampling method has a faster searching speed and lower missing scene change detection than the sequential searching method for the whole moving pictures, yet employed searching algorithm and detection interval greatly affect missing frame and searching precision. In this study, the whole moving pictures were primarily retrieved threshold by the temporal difference of histogram scene change detection method. We suggested a dynamic threshold algorithm using cut detection interval and derived an equation formula to determine optimal primary retrieval threshold which can cut detection interval computation. Experimental results show that the proposed dynamic threshold algorithm using cut detection interval method works up about 30 percent in precision of performance than the sequential searching method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.4A
/
pp.356-363
/
2002
Video scene segmentation is fundamental role for content based video analysis and many kinds of scene segmentation schemes have been proposed in previous researches. However, there is a problem, which is to find optimal threshold value according to various kinds of movies and its content because only fixed single threshold value usually used for cut detection. In this paper, we proposed the variable dynamic threshold method, which change the threshold value by a probability distribution of cut detection interval and information of frame feature differences and cut detection interval in previous cut detection is used to determine the next cut detection. For this, we present a cut detection algorithm and a parameter generation method to change the threshold value in runtime. We also show the proposed method, which can minimize fault alarm rate than the existing methods efficiently by experimental results.
Fire must be extinguished as quickly as possible because they cause a lot of economic loss and take away precious human lives. Especially, the detection of smoke, which tends to be found first in fire, is of great importance. Smoke detection based on image has many difficulties in algorithm research due to the irregular shape of smoke. In this study, we introduce a new real-time smoke detection algorithm that reduces the detection of false positives generated by irregular smoke shape based on faster r-cnn of factory-installed surveillance cameras. First, we compute the global frame similarity and mean squared error (MSE) to detect the movement of smoke from the input surveillance camera. Second, we use deep learning algorithm (Faster r-cnn) to extract deferred candidate regions. Third, the extracted candidate areas for acting are finally determined using space and temporal features as smoke area. In this study, we proposed a new algorithm using the space and temporal features of global and local frames, which are well-proposed object information, to reduce false positives based on deep learning techniques. The experimental results confirmed that the proposed algorithm has excellent performance by reducing false positives of about 99.0% while maintaining smoke detection performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.