• Title/Summary/Keyword: frame detection

Search Result 920, Processing Time 0.035 seconds

Wavelet-Based Moving Object Segmentation Using Double Change Detection and Background Registration Technique (Double change detection과 배경 구축 기법을 이용한 웨이블릿 기반의 움직이는 객체 분할)

  • Im, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.221-222
    • /
    • 2007
  • This paper presents wavelet-based moving object segmentation using double change detection and background registration. Three successive frame differences for detection change were used in the wavelet domain. The background was constructed with the wavelet coefficients in the lowest frequency subband which are the approximated version of an image. Combining double change detection and background registration, we can obtain an efficient moving object segmentation algorithm.

  • PDF

Implementation of GPU Acceleration of Object Detection Application with Drone Video (드론 영상 대상 물체 검출 어플리케이션의 GPU가속 구현)

  • Park, Si-Hyun;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.117-119
    • /
    • 2021
  • With the development of the industry, the use of drones in specific mission flight is being actively studied. These drones fly a specified path and perform repetitive tasks. if the drone system will detect objects in real time, the performance of these mission flight will increase. In this paper, we implement object detection system and mount GPU acceleration to maximize the efficiency of limited device resources with drone video using Tensorflow Lite which enables in-device inference from a mobile device and Mobile SDK of DJI, a drone manufacture. For performance comparison, the average processing time per frame was measured when object detection was performed using only the CPU and when object detection was performed using the CPU and GPU at the same time.

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

A Survey on Vision Transformers for Object Detection Task (객체 탐지 과업에서의 트랜스포머 기반 모델의 특장점 분석 연구)

  • Jungmin, Ha;Hyunjong, Lee;Jungmin, Eom;Jaekoo, Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.319-327
    • /
    • 2022
  • Transformers are the most famous deep learning models that has achieved great success in natural language processing and also showed good performance on computer vision. In this survey, we categorized transformer-based models for computer vision, particularly object detection tasks and perform comprehensive comparative experiments to understand the characteristics of each model. Next, we evaluated the models subdivided into standard transformer, with key point attention, and adding attention with coordinates by performance comparison in terms of object detection accuracy and real-time performance. For performance comparison, we used two metrics: frame per second (FPS) and mean average precision (mAP). Finally, we confirmed the trends and relationships related to the detection and real-time performance of objects in several transformer models using various experiments.

A Study on Integrated Fire Alarm System for Safe Urban Transit (안전한 도시철도를 위한 통합 화재 경보 시스템 구축의 연구)

  • Chang, Il-Sik;Ahn, Tae-Ki;Jeon, Ji-Hye;Cho, Byung-Mok;Park, Goo-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.768-773
    • /
    • 2011
  • Today's urban transit system is regarded as the important public transportation service which saves passengers' time and provides the safety. Many researches focus on the rapid and protective responses that minimize the losses when dangerous situation occurs. In this paper we proposed the early fire detection and corresponding rapid response method in urban transit system by combining automatic fire detection for video input and the sensor system. The fire detection method consists of two parts, spark detection and smoke detection. At the spark detection, the RGB color of input video is converted into HSV color and the frame difference is obtained in temporal direction. The region with high R values is considered as fire region candidate and stepwise fire detection rule is applied to calculate its size. At the smoke detection stage, we used the smoke sensor network to secure the credibility of spark detection. The proposed system can be implemented at low prices. In the future work, we would improve the detection algorithm and the accuracy of sensor location in the network.

  • PDF

The Pitch Detection Using Variable LPF (Variable LPF에 의한 피치검출)

  • 백금란
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.88-92
    • /
    • 1993
  • In speech signal processing, it is necessary to detect exactly the pitch. The algorithms of pitch extraction which have been proposed until now are difficult to detect pitches over wide range speech signals. Thus we propose a new algorithm which uses the G-peak extraction to do it. It is the method that finds the most MZI(maximum zero-crossing interval) at each frame and convolve it with speech signal ; this is the same with passing speech signals to variable LPF. Finally we obtained the pitch, improve the accuracy of pitch detection and extract it with the high speed.

  • PDF

An Explicit Voiced Speech Classification by using the Fluctuation of Maximum Magitudes (최대진폭의 Fluctuation에 의한 유성음구간 Explicit 검출)

  • 배명진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1987.11a
    • /
    • pp.86-88
    • /
    • 1987
  • Accurate detection of the voicved segment in speech signals is important for robust pitch extraction. This paper describes an explicit detection algorithmfor detecting the voiced segment in speech signals. Thsi algoithm is based on the fluctuation properties of maximum magnitudes in each frame of speech signals. The performance of this detector is evaluated and compared to that obtained from manually classifying 150 recorded digit utterances.

  • PDF

A Study on the Implementation of the Motion Tracing ASIC Based on the Edge Detection (윤곽선 검출에 바탕을 둔 움직임 추적 ASIC 구현에 관한 연구)

  • 김희걸;조경순
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.112-115
    • /
    • 2000
  • This paper describes the algorithm, architecture and design of the circuit implementing motion tracing features based on the edge detection. The Sobel operation was used to compute the edges of moving objects. Motion tracing is performed by searching for the center of the edges for each frame and adding those centers. The edger and the centers of the moving object from camera were displayed in the monitor and verified using Xillinx FPGA.

  • PDF

Tracking of Moving Objects Using Levelset and Histogram (레벨 세트와 히스토그램을 이용한 이동 물체의 추적)

  • 박수형;염동훈;고기영;김두영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.137-140
    • /
    • 2002
  • This paper presents a new variational framework for detecting and tracking moving objects in image sequence. Motion detection is performed using Level Set Model. The original frame is used to provide th moving object boundaries Then, the detection and the tracking problem are addressed in a common framework that employs a inward-outward curve evolution function. This function is minimized using a gradient decent method.

  • PDF

Video smoke detection with block DNCNN and visual change image

  • Liu, Tong;Cheng, Jianghua;Yuan, Zhimin;Hua, Honghu;Zhao, Kangcheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3712-3729
    • /
    • 2020
  • Smoke detection is helpful for early fire detection. With its large coverage area and low cost, vision-based smoke detection technology is the main research direction of outdoor smoke detection. We propose a two-stage smoke detection method combined with block Deep Normalization and Convolutional Neural Network (DNCNN) and visual change image. In the first stage, each suspected smoke region is detected from each frame of the images by using block DNCNN. According to the physical characteristics of smoke diffusion, a concept of visual change image is put forward in this paper, which is constructed by the video motion change state of the suspected smoke regions, and can describe the physical diffusion characteristics of smoke in the time and space domains. In the second stage, the Support Vector Machine (SVM) classifier is used to classify the Histogram of Oriented Gradients (HOG) features of visual change images of the suspected smoke regions, in this way to reduce the false alarm caused by the smoke-like objects such as cloud and fog. Simulation experiments are carried out on two public datasets of smoke. Results show that the accuracy and recall rate of smoke detection are high, and the false alarm rate is much lower than that of other comparison methods.