• Title/Summary/Keyword: fragrant oil

Search Result 26, Processing Time 0.028 seconds

Preparation and Release Behaviors of Chitosan Microcapsules Containing Fragrant Oil (향오일을 함유한 키토산 마이크로캡슐의 제조 및 방출 특성)

  • Park, Soo-Jin;Lee, Yun-Mok
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.511-516
    • /
    • 2005
  • In this work, the crosslinked-chitosan microcapsules containing fragrant oil were prepared by oil-in-water-in-oil (O/W/O) multi-emulsion method. The effects of concentration of fragrant oil and stirring rates on the preparing of the microcapsules were investigated. The diameter and form of the microcapsules were observed by scanning electron microscope (SEM). As a result, the average particle size of microcapsules was decreased with increasing the stirring rate. The formation of chitosan microcapsules was comfirmed by FT-IR. The inclusion of fragrant oil into chitosan microcapsules was determined in the presence of specific peak of fragrant oil, i.e., $1,460cm^{-1}$, $2,960cm^{-1}$. Also, the release behavior or profile of fragrant oil from chitosan microcapsules was examined with UV/vis spectra. Released amounts of fragrant oil were increased with increasing as the content of fragrant oil and decreasing the pH.

Development of New Fibers Related Sensitivity and comfortability -Preparation of Melamine Microcapsules Containing Fragrant oil and the Their Application- (감성기능 섬유신소재의 개발(I) - 방향성 멜라민 마이크로캡슐의 제조와 응용 -)

  • Hong, Ki Jeong;Park, Soo Min
    • Textile Coloration and Finishing
    • /
    • v.8 no.5
    • /
    • pp.76-83
    • /
    • 1996
  • Fragrant microcapsules were prepared by in situ polymerization using urea-formaldehyde prepolymer. Lemon oil and migrin oil as susceptible materials were used. The diameter and distribution of the microcapsule were controlled by several factors, such as wall material, core material content, emulsion agent and stirring speed, respectively. Susceptible cotton fabrics with fragrant release functionality were successfully produced by using microcapsule containing fragrant materials.

  • PDF

Influence of Surface Treatment of SiO$_2$ and Stirring Rate on Fragrant Oil Release Behavior of Poly($\varepsilon$-caprolactone) Microcapsules (실리카의 표면 처리와 교반 속도가 폴리카프로락톤 마이크로캡슐의 향유 방출 거동에 미치는 영향)

  • 박수진;양영준;이재락;서동학
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.464-469
    • /
    • 2003
  • In this work, the fragrant oil release behavior of poly($\varepsilon$-caprolactone) (PCL) microcapsules containing SiO$_2$ was investigated. The SiO$_2$ was chemically treated in 10, 20, and 30 wt% hydrochloric acid and sodium hydroxide. The acid and base values were determined by Boehm's titration technique and $N_2$/77 K adsorption isotherm characteristics, the specific surface area and total pore volume were studied by BET. The PCL microcapsules containing SiO$_2$ and fragrant oil were prepared by oil-in-water (o/w) emulsion solvent evaporation method. The shape and surface of PCL microcapsules were observed using image analyzer and scanning electron microscope (SEM). The fragrant oil release behavior of PCL microcapsules was characterized using UV/vis. spectra. The average diameters of PCL microcapsules were decreased from 35 to 21 $\mu$m with increasing stirring rate. It was found that in the case of acidic treatment the fragrant oil adsorption capacity and release rate were increased due to the increase of specific surface area and acid value. In the case of basic treatment, the fragrant oil adsorption capacity and release rate were decreased due to the decrease of sp ecific surface area and the increase of acid-base interactions between SiO$_2$-NaOH and fragrant oil with increasing base value of SiO$_2$.

Release Behaviors of Poly(ε-caprolactone)/Poly(ethyleneimine) Microcapsules Containing Fragrant Oil (향오일을 함유한 Poly(ε-caprolactone)/Poly(ethyleneimine) 마이크로캡슐의 방출거동)

  • Park, Soo-Jin;Seok, Su-Ja
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.482-486
    • /
    • 2005
  • The biodegradable poly(${\varepsilon}$-caprolactone)(PCL)/poly(ethylene imine)(PEI) microcapsules containing $Al_2O_3$ and fragrant oil were prepared with different PEI contents. The effects of stirring rate and concentration of the surfactant on the diameter and morphologies of microcapsules were investigated by using scanning electron microscope (SEM). Thermal behaviors were studied by using a differential scanning calorimetry(DSC), and the release behaviors of fragrant oil from microcapsule were characterized by UV/vis. spectrophotometer. As a result, the average particle size of the microcapsules decreased with increasing the stirring rate or concentration of the surfactant. The surface morphologies of the microcapsules were changed from smooth surfaces to skin-like rough surfaces as increasing the PEI content. These results were mainly due to the increased hydrophilic groups at the microcapsule surfaces, resulting in increasing the release rate of fragrant oil in the microcapsules studied.

Preparation of Microcapsules Containing Fragrant Oil and Its Application to Textile Finishing

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Ryu, Hwa-Won;Yun, Jong-Sun;Jang, Hong-Gi;Kim, Sun-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.860-863
    • /
    • 2005
  • The microcapsules containing fragrant oil as functional material were prepared by in-situ polymerization with prepolymer that was made from melamine-formaldehyde (MF) as wall material of microcapsules. The effects of polymerization variables, such as the nature and concentration of surfactants, stirring rate, and stirring time, on the size and distribution of the particles were investigated. Fourier transform-infrared spectroscopy (FT-IR), thermal analysis, particle size analysis, scanning electron microscopy (SEM) observation were used to investigate the characteristics of microcapsules. Through the FT-IR and SEM analysis, we found that the prepared microcapsules were containing fragrant oil and the shape of particle was spherical. The nature and concentration of surfactants, stirring rate, and stirring time had profound effects on the particle size and particle size distribution.

  • PDF

The Production of Microcapsules containing Fragrant material (방향물질을 함유한 마이크로캡슐 제조)

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.5
    • /
    • pp.684-690
    • /
    • 2002
  • The microcapsules containing fragrant material as functional compound were produced by in-situ polymerization. The prepolymer was made from urea-formaldehyde(UF) and melamine-formaldehyde(MF) as wall materials of microcapsules. The effects of wall material, dispersing agent and ratio of wall material to core material on the mean diameter variation were investigated. Thermal efficiency and release behavior of microcapsules were measured. The resultant UF and MF microcapsules are capable of preserving fragrant oil for long self-life.

Preparation of Fragrant Microcapsule for Reducing Stress (긴장완화를 위한 향기나는 마이크로캡슐의 제조)

  • Kim, Yoon A;Kim, So Hyun;Park, Ji Su;Lee, Da Som;Kim, Jin Gon;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • A fragrant microcapsule was prepared for use by students to reduce the stress of taking examinations. Rosmarinic acid was used as a fragrant oil which had the effect of relaxing stress, polycaprolactone (PCL) was used as a capsule wall material, and poly(vinyl alcohol) (PVA) as a stabilizer. The solvent evaporation method was used to form the microcapsule. The microcapsules were prepared by changing the stirring rate, the concentration of the stabilizer, and the molecular weight of PCL. The shape of the microcapsule was characterized by scanning electron microscopy (SEM). The size of the microcapsule was reduced by increasing the stirring speed. The release rate of rosmarinic acid was decreased when the higher molecular weight PCL was used. When the prepared microcapsule was tested in an aromatherapy class, the microencapsulated fragrant oil had a longer release time than the original fragrant oil. The study data showed that this fragrant oil was effective for increasing concentration ability, reducing stress, increasing digestive power, and increasing memory for the students.

Preparation and characterization of Melamine-Formaldehyde Resin Microcapsules Containing Fragrant Oil

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Yun, Jong-Sun;Jang, Hong-Gi;Kim, Sun-Ho;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.332-336
    • /
    • 2006
  • In this study, melamine-formaldehyde microcapsules were prepared via in situ polymerization using peppermint oil as a core material, melamine-formaldehyde as the wall material, Tween 20 as the emulsifier, and poly (vinyl alcohol) as a protective colloid. The melamine-formaldehyde microcapsules prepared in this study were then evaluated with regard to their structures, thermal properties, particle size distributions, morphologies, and release behaviors.

Factors Affecting the Characteristics of Melamine Resin Microcapsules Containing Fragrant Oils

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Jang, Hong-Gi;Kim, Sun-Ho;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.391-395
    • /
    • 2006
  • Microcapsules containing fragrant oils as a core material were prepared by in situ polymerization, using melamine-formaldehyde prepolymer as the wall material. The several parameters, such as stirring times, stirring rates, emulsifier types, emulsifier concentrations, and the viscosity of the core materials, affect the characteristics of the microcapsules. These parameters were investigated by the analyses of microcapsule size, particle size distribution, and morphology. The average microcapsule size decreased with an increase in stirring time, stirring rate, emulsifier concentration, and viscosity of the core material. It was also found that poly(vinyl alcohol) as a protective colloid could enhance the stability of the melamine-formaldehyde microcapsules.

EEG Signal, Subjective Fragrance Sensation, and Preference of Citrus Oil Microcapsule-Loaded Fabric (감귤 오일 마이크로캡슐 가공 직물에 대한 EEG 신호와 주관적 향기감성 및 선호도)

  • Badmaanyambuu, Sarmandakh;Kim, Chunjeong;Yi, Eunjou
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.2
    • /
    • pp.297-309
    • /
    • 2019
  • This study investigated EEG signal, subjective fragrance sensation, and the preference of differently colored cotton knit treated with Citrus unshiu oil containing microcapsules as well as examined their relationships for providing regression models on subjective fragrance preference. Color variables combining 2-level hue (Yellow and Green) and 3-level tone (strong, pale, and grayish) were applied by dyeing prior to microcapsule treatment. We invited 28 female college students aged 20's for EEG signal experiments and subjective fragrance sensations with fragrant knit by rubbing. EEG signals at $mid-{\alpha}$, $fast-{\alpha}$, and $low-{\beta}$ showed significant differences depending on color; Green had more relative power values and grayish tone did more at $low-{\beta}$. Even though subjective sensation showed no significant differences depending on color, some of them such as Fresh, Comfort, and Natural showed significant correlations with EEG signal at $low-{\beta}$, which means that the fragrance sensations of Citrus unshiu fragrance are concerned with attention and alertness for Koreans. Fragrance preference was regressed significantly using some EEG signals and subjective sensation. The results could be utilized to value up fragrant textiles by Citrus unshiu oil.