• Title/Summary/Keyword: fragmentation mechanism

Search Result 300, Processing Time 0.026 seconds

Effects of Conjugated Linoleic Acid and Stearic Acid on Apoptosis of the INS-1 β-cells and Pancreatic Islets Isolated from Zucker Obese (fa/fa) Rats

  • Jang, I.S.;Hwang, D.Y.;Lee, J.E.;Kim, Y.K.;Kang, T.S.;Hwang, J.H.;Lim, C.H.;Chae, K.R.;Jeong, J.H.;Cho, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1060-1065
    • /
    • 2003
  • To determine whether dietary fatty acids affect pancreatic $\beta$-cell function, the INS-1 $\beta$-cells and the pancreatic islets isolated from Zucker obese (fa/fa) rats were cultured with stearic acid and conjugated linoleic acid (CLA). As a result, DNA fragmentation laddering was substantially decreased in the INS-1 $\beta$-cells and the isolated pancreatic islets cultured with 2 mM CLA compared to those cultured with stearic acid. To investigate the mechanism by which CLA alleviates cell apoptosis under DNA fragmentation assay, we examined mRNA expressions of apoptosis-related proteins including Bax and Bcl-2 associated with cell death agonist and antagonist, respectively, in both INS-1 cells and islets cultured with 2 mM fatty acids. Bax mRNA expression was not altered by either stearic acid or CLA, whereas Bcl-2 mRNA expression was enhanced by CLA when compared to the stearic acid cultures. However, there were no changes in cell apoptosis and apoptotic-regulating gene products in either INS-1 cells or isolated islets treated with or without 2 mM CLA. It is concluded that CLA maintains $\beta$-cell viability via increased Bcl-2 expression compared to the stearic acid cultures, which may help to alleviate, at least somewhat, the onset of NIDDM in the physiological status. More detailed study is still needed to elucidate the effect of CLA on the prevention of fatty acid-induced $\beta$-cell apoptosis.

Apoptotic Process is Involved in the L-Glutamate-Induced PC12 Cell Death (L-Glutamate에 의한 PC12 세포의 고사성 사망)

  • Sung, Ki-Wug;Jung, Kyung-Heui;Kim, Seong-Yun;Kang, Jung-Hyae;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.699-705
    • /
    • 1997
  • Although it is known that neuronal cell death during development occurs by apoptosis, the mechanisms underlying excitatory amino acid-induced neuronal cell death remain poorly understood. In this study we have examined the mechanism by which L-glutamate, an excitatory amino acid neurotransmitter, induces cell death in PC12 cell lines. To characterize cell death, we employed sandwich enzyme-linked immunosorbent assay(ELISA) method for cellular DNA fragmentation, DNA agarose gel electrophoresis and chromatin staining by acridine orange and ethidium bromide after treating the PC12 cells with L-glutamate. L-Glutamate caused dose-dependent cell death with a maximum at 24 hrs after the treatment. These cellular fragmentation was blocked by pretreatment of MK-801, a noncompetitive N-methyl-D-aspartic acid(NMDA) receptor antagonist, and nerve growth factor(NGF). Analysis of DNA integrity from L-glutamate-treated cells revealed cleavage of DNA into regular sized fragments, a biochemical hallmark of apoptosis. The PC12 cells that were induced to die by L-glutamate treatment exhibited classical chromatin condensation under the light microscopy after acridine orange and ethidium bromide staining. These results suggest that apoptosis is one of the key features that are involved in L-glutamate-induced excitotoxic cell death in PC12 cells, and these cell death are mediated by NMDA receptor and depend on NGF.

  • PDF

Induction of p21 and apoptosis by C11 in human hepatocarcinoma cells

  • Kim, Won-Ho;Kang, Kyung-Hwa;Choi, Kyung-Hee
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1998.10b
    • /
    • pp.360-360
    • /
    • 1998
  • C11, a chloride-containing VK3 analog, acts as a mediator of programmed cell death in SK-Hep-1 cell lines, but its molecular mechanisms linked to cell death are not understood. In this study, we investigated the expression of p21 gene and its relationship to apoptosis induced by C11. In SK -hep-1 cells, the addition of C11 resulted in time-dependent growth suppression and DNA fragmentation characteristics of apoptosis. p21 protein was induced during this process, while the protein level of p53 was not changed at the same condition. This apoptotic cell death with p21 induction was also observed in the Hep3B cells lacking functional p53 after treatment of C11. These results suggest that C11-induced apoptosis is associated with up-regulation of p21 protein in p53-independent pathway. Next, in order to confirm whether the p53-independent p21 induction is required for C11-induced apoptosis, we introduced the p21 gene into Hep3B. Overexpression of p21 did not affect the expression of the bcl-2 gene, but DNA fragmentation and PARa cleavage were significantly increased. These data indicate that p21 is involved in C11-induced apoptosis. Although Bcl-2 has been implicated to interfere with an essential signaling molecule involved in the apoptosis pathway, its molecular mechanism and target molecule are poorly understood. To determine the effects of bcl-2 overexpression on apoptosis and to investigate whether BcI-2 interfers with the p53-independent p21 pathway, we transfected the bcl-2 expression vector into SK - Hep-1 cels. Overexpression of Bcl-2 prevented C11-induced apoptosis. Taken together, C11-induced apoptosis is regulated by p52-independent p21 pathway and bcl-2 may inhibit functional activity of p21, therebe may inhibit the C11-induced apoptosis.ptosis.

  • PDF

Evidence of DNA Replication Licensing and Paternal DNA Degradation by MCM7 and ORC2 in the Mouse One-cell Embryo

  • Kim, Chang Jin;Kim, Tae Hoon;Lee, Eun-Woo;Lee, Kyung-Bon
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.372-379
    • /
    • 2017
  • This study was investigated to test whether paternal DNA that was destined for degradation was properly licensed by testing for the presence of mini-chromosome maintenance protein (MCM) 7 and origin recognition complex (ORC) 2 in the paternal pronuclei. ORC2 is one of the first licensing protein to come on and MCM7 is one of the last licensing protein to come on. Zygotes were prepared by injection of control and treated sperm injection (ICSI). To control for DNA breakage, epididymal spermatozoa were treated with DNase I to fragment the DNA, then injected into oocytes. The presence of MCM7 and ORC2 in the pronuclei of mouse zygotes was tested by immunohistochemistry, just before the onset of DNA synthesis, at 5 h after fertilization, and after DNA synthesis began, at 9 h post fertilization. We found that in all cases, both MCM7 and ORC2 were present in both pronuclei at 5 h after sperm injection, just before DNA synthesis began. This indicates that no matter how extensive the DNA damage, recruitment of licensing proteins to the origins of replication was not inhibited. Sperm DNA fragmentation does not prevent licensing of DNA replication origins. Furthermore, the embryo recognizes DNA that is damaged by nucleases. Our data indicate that the one-cell embryo does harbor a mechanism to prevent the replication of severely damaged DNA from spermatozoa, even though the embryos do not undergo classical apoptosis.

Apoptotic Activity of Insect Pathogenic Fungus Paecilomycesc japonica Toward Human Acute Leukemia Jurkat T Cells is Associated with Mitochondria-Dependent Caspase-3 Activation Regulated by Bcl-2

  • Park, Hye-Won;Jen, Do-Youn;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.950-956
    • /
    • 2002
  • The antitumor activity of the insect pathogenic fungus Paecilomyces japonica has been attributed to apoptotic cell death. However, the mechanism underlying the induced apoptosis has not yet been elucidated. In this study, we for the first time show that mitochondria-dependent caspase-3 activation were associated with the apoptotic activity of P. japonica in human acute leukemia Jurkat T cells. When Jurkat T cells were treated with the ethyl acetate extract of P japonica at concentrations ranging from $2-6{\mu}g/ml$, apoptotic cell death. accompanied by several biochemical events such as caspase-9 activation, caspase-3 activation, degradation of poly (ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation, was induced in a dose-dependent manner. In addition, the release of cytochrome c from mitochondria was detected. Under these conditions, the expression of Fas and Fas-ligand (FasL) remained unchanged. Ethyl acetate extract-induced mitochondrial cytochrome c release, caspase-3 activation, PARP cleavage, and apoptotic DNA fragmentation were suppressed by the ectopic expression of Bcl-2, which is known to block mitochondrial cytochrorme c release. Accordingly, these results demonstrate that P. japonica-induced apoptotic cell death is mediated by a cytochrome c-dependent caspase-3 activation pathway that can be interrupted by Bcl-2.

Antitumor Activity of Paecilomyces japonica is Mediated by Apoptotic Cell Death

  • Park, Youn-Hee;Moon, Eun-Kyung;Shin, Yong-Kyu;Bae, Myung-Ae;Kim, Jong-Guk;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.16-20
    • /
    • 2000
  • The aqueous extract from the cultural mycelium of Paecilomyces japonica showed cytotoxicity against several tumor cells including Jurkat, U937, HL-60, HepG2, BW5147.G.1.4, and NIH3T3. When the aqueous extract was fractionated by sequential organic solvent extractions using n-hexane and ethyl acetate, the ethyl acetate fraction appeared to contain the most cytotoxic activity, and the $IC_{50}$ values for various tumor cells were in the range from 1.5 to $10.0{\;}\mu\textrm{g}/ml$. To elucidate the cellular mechanism underlying the induced cytotoxicity, the apoptotic DNA fragmentation along with the cell cycle proression was examined in Jurkat T cells following the ethyl acetate fraction treatment. In the presence of $2.5{\;}\mu\textrm{g}/ml$ of the ethyl acetate fraction, apoptotic DNA fragmentation of the cells was detected within 1 h and increased upto 24 h in a time-dependent manner. Under the same conditions, a sub-G1 peak was detectable by flow cytometry. These results indicate that the cytotoxic effect of P. japonica on tumor cells is attributable to the induced apoptosis.

  • PDF

Growth Inhibition of Uterine Leiomyoma Cells Using Rhubarb (대황이 자궁상종세포의 세포자멸사에 미치는 영향)

  • Yang Young Phil;Kim Hyun Tae;Kim Sang Chan;Baek Seung Hee;Kim Mi Rye;Kwon Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.200-205
    • /
    • 2004
  • Uterine leiomyoma is the most common tumor in the female genital tract. Although the tumor is benign, it is of paramount importance since it often causes profuse menstrual bleeding, pressure symptoms, and infertility. Nevertheless, the etiology and patholphysiology of this abnormality remain poorly understood. The traditional definitive treatment for uterine leiomyomas is hysterectomy and, even today, symptomatic leiomyomas are the leading cause of hysterectomy in Korea. Clearly, the development of a safe, effective, and nonsurgical method of treatment for leiomyoma would be of great benefit to many women. The present study was designed to investigate the effect of Rhubarb on apoptosis in uterine leiomyoma cells. Results demonstrate that Rhubarb inhibited cell growth in dose-dependent manner. Cell growth significantly decreased to 60% of control in the treatment of Rhubarb (300㎍/㎖). Associated with the decreased response, there was a concomitant and significant delay of subG1 8.32% above baseline in the treatment of Rhubarb (300㎍/㎖). The delay of subG1 showed a dose-dependent manner, as evidenced by the flow cytometry. The reduced cellular viability on exposure to Rhubarb may represent the induction of apoptosis, at least in part, as concomitantly evidenced by enhanced DNA fragmentation, PARP cleavage and caspase 9 and decreased pro-caspase 3. In addition, Rhubarb decreased clAP1 expression levels in dose-dependent manner. Talcen together, there results suggest that Rhubarb can produce a potent inhibition effect of apoptosis and implicate the delay of G1 phase in the cell cycle and pathways of caspase 3 and 9 in the mechanism underlying inhibitory apoptosis effect of Rhubarb.

Induction of Apoptosis by Ursolic Acid in F9 Teratocarcinoma Cells (F9 기형암종세포에서 Ursolic acid의 apoptosis 유도기작)

  • 강창모;백진현;김규원
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.51-59
    • /
    • 1998
  • The apoptosis-inducing activity of ursolic acid (UA) was examined in mouse F9 teratocarcinoma cells on the bases of biochemical and morphological characteeristics. UA, pentacyclic trierpene acid, exhibits antitumor activities including inhibition of skin tumorigenesis, induction of tumor cell differentiation and antitumor promotion. Treatment with UA showed that the decrease of cell viability was dose-dependent. UA also induced genomic DNA fragmetation, a hallmark of apoptosis, indicating that the mechanism of UA-induced F9 cell death was through apoptosis. When the morphology of the F9 cells was examined by electron microscopy, the cells treated with UA showed the charcteristic morphological features of apoptosis such as chromatin condensation and nuclear fragmentation. DNA fragmentations by UA were inhibired by cycloheximide, which suggest that de novo protein synthesis was required for DNA fragmentation by UA. Inaddition, the expression of c-jun was increased, but those of c-myc and laminin B1 were decreased during apoptosis induced by UA in F9 cells. These results suggest that UA causes an apoptosis in F9 cells. Further, the increased expression of c-jun may be involved in the UA-induced apoptosis of f9 cells.

  • PDF

The effect of Sparganii Rhizoma on the proliferation inhibition of human uterine leiomyoma cell and expression of gene related cell apoptosis (삼릉(三稜)이 자궁근종세포의 증식억제와 세포자멸사 관련 발현에 미치는 영향)

  • Park, Chang-Gun;Baek, Seung-Hee;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.2
    • /
    • pp.199-213
    • /
    • 2006
  • Purpose : This study was aimed to investigate the inhibitory effect of Sparganii Rhizoma on the proliferation of human uterine leiomyoma cells and the expression of gene related the mechanism of cell apoptosis. Methods : This study was evaluated the number of death cells treated with indicated concentration of Sparganii Rhizoma and investigated cell death rate by MTS assay. Furthermore, fluorescence-activated cell sorter analysis and DNA fragmentation assay were used to dissect between necrosis and apoptosis. and then we observed the differential gene expression by western blot analysis. Results :1) The inhibitory effect on the growth of uterine leiomyoma cell treated with Sparganii Rhizoma was increased in a dose dependent manner. 2) As the result of FACS analysis, subG1 phase incrase was observed 23.49% inuterine leiomyoma cell treated with Sparganii Rhizoma at $500\;{\mu}g/ml$ compared to control.. 3) The gene expression of p53, p21 related cell apoptosis was increased according to increasing concentration but p27 was none exchanged. 4) The expression of cyclin A, D and E was decreased in a concentration proportional and then the dephosphorylation of pRb was increased. 5) The character of apoptosis, DNA fragmentation was significantly observed according to increasing concentration. 6) The expression of pro-caspase3 were decreased dependent on treatment concentration and activated PARP took place. Conclusion : The inhibitory effect of Sparganii Rhizoma on the proliferation of human uterine leiomyoma cells was observed with apoptosis and cell cycle arrest. These data suggest that Sparganii Rhizoma might be candidate of medical therapy for uterine leiomyoma.

  • PDF

Antiproliferative and Apoptotic Effects of Sasa quelpaertensis Nakai in Human Cancer Cells (제주조릿대의 인간 암세포 증식 저해와 자연사멸 효과)

  • Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.903-909
    • /
    • 2014
  • Plants are an invaluable source of potential new anti-cancer drugs. Sasa quelpaertensis Nakai (Korean name, Jeju-Joritdae) is one of these plants with medical value, which is a bamboo grass widely distributed in Mt. Halla on Jeju Island, Korea. Here, we investigated the apoptotic effects of S. quelpaertensis leaf extracts in six human cancer cell lines (A549, MCF-7, HepG-2, Hela, HCT116 and A375). MTT assay signified the antiproliferative nature of S. quelpaertensis extracts against all tested cancer cells: S. quelpaertensis displayed slight cytotoxicity against A549, MCF-7 and HepG-2 cells, whereas it was exclusively cytotoxic to Hela, HCT116 and A375 cells. Apoptotic cells were evaluated using PI staining of DNA fragmentation by flow cytometry (sub-G1 peak). PI staining indicated increasing accumulation of Hela, HCT116 and A375 cells at sub-G1 phase. Further events like generation of nitric oxide ($NO^{\bullet}$) were accompanied in the S. quelpaertensis Nakai-induced apoptosis. Augmented $NO^{\bullet}$ generation resulted in the DNA fragmentation of Hela, HCT116 and A375 cells by treatment with S. quelpaertensis leaf extracts. These results suggest that S. quelpaertensis may be a potential natural resource for treating cancer cell. To identify the exact mechanisms of molecular mechanism of S. quelpaertensis induced apoptosis awaits further investigation.