• Title/Summary/Keyword: fragmentation mechanism

Search Result 300, Processing Time 0.024 seconds

Apoptosis of Germ Cells after Vasectomy in Rats (수컷 랫드에서 졍관절제술에 의한 생식세포의 Apoptosis)

  • Choi, Jong-yun;Cho, Sung-whan;Ryu, Si-yoon;Jee, Young-heun;Lee, Geun-jwa;Son, Hwa-young
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.485-492
    • /
    • 2003
  • The pathological mechanism of impaired spermatogenesis after vasectomy has not been completely investigated. In this study, we examined pathological changes of the testis and the Fas-Fas ligand (FasL) mediated signaling pathway in apoptotic germ cell death after vasectomy in rats. Ten-weeks old Sprague-Dawley rats were underwent bilateral vasectomy and sacrificed after 1 day, 2 days, 3 days, 5 days, 1 week, 2 weeks, and 4 weeks of surgery and the testes were removed. Histopathological evaluation of spermatogenesis was performed by hematoxylin-eosin and periodic acid-Schiff-hematoxylin staining. To elucidate the pathophysiology of seminiferous tubule damage, terminal dUTP nick end labeling staining, electrophoresis assay of DNA fragmentation, and Western blotting analysis for Fas-FasL were performed. Relative weights of testes were decreased from 5 days after vasectomy. Germ cell degeneration were first found in the spermatogonia and spermatocytes at stages I-VI, and XII-XIV seminiferous tubules. Mean incidence of apoptotic germ cells after vasectomy progressively increased to peak in 5 days, and then gradually decreased to the control levels in 2 weeks after vasectomy. The expression of Fas-FasL reached maximum level at 5 days after vasectomy and then declined. In conclusion, impaired spermatogenesis after vasectomy associated with an increase in germ cell apoptasis, which is partly mediated by the activation of Fas-FasL.

Neuroprotective Effects of Carpinus tschonoskii MAX on 6-Hydroxydopamine-Induced Death of PC12 Cells

  • Kim, Min-Kyoung;Kim, Sang-Cheol;Kang, Jung-Il;Boo, Hye-Jin;Hyun, Jin-Won;Koh, Young-Sang;Park, Deok-Bae;Yoo, Eun-Sook;Kang, Ji-Hoon;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.454-462
    • /
    • 2010
  • The present study investigated the neuroprotective effect of Carpinus tschonoskii MAX and its intracellular protective mechanism on 6-hydroxydopamine (6-OHDA)-induced oxidative damage in PC12 cells. We found that pretreatment of PC12 cells with C. tschonoskii extract significantly inhibited the cell death induced by 6-OHDA in a dose dependent manner. C. tschonoskii extract decreased 6-OHDA-induced apoptotic events such as chromatin condensation, DNA fragmentation, the decrease of Bcl-2/Bax ratio, caspase-3 activation and PARP cleavage. C. tschonoskii extract also reduced generation of 6-OHDA-induced reactive oxygen species and nitric oxide. Furthermore, C. tschonoskii extract up-regulated the myocyte enhancer factor 2 D (MEF2D), a critical transcription factor for neuronal survival, and Akt activity, whereas it inhibited the activity of ERK1/2 and JNK. The results suggest that C. tschonoskii extract decreases 6-OHDA-induced oxidative stress and could prevent PC12 cell apoptosis induced by 6-OHDA via the up-regulation of MEF2D and Akt activity, and thus may have application in developing therapeutic agents for Parkinson's disease.

Modulation of Cytotoxicity by Nitric Oxide Donors during Treatment of Glioma with Anticancer Drugs

  • Park, Jeong-Jae;Kang, Jong-Sool;Lee, Hyun-Sung;Lee, Jong-Soo;Lee, Young-Ha;Youm, Jin-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.5
    • /
    • pp.366-374
    • /
    • 2005
  • Objective : Nitric oxide[NO] is implicated in a wide range of biological processes in tumors and is produced in glioma. To investigate the role of NO and its interaction with the tumoricidal effects of anticancer drugs, we study the antitumor activities of NO donors, with or without anticancer drugs, in human glioma cell lines. Methods : U87MG and U373MG cells were treated with the NO donors sodium nitroprusside[SNP] and S-nitroso-N-acetylpenicillamine[SNAP], alone or in combination with the anticancer drugs 1,3-bis[2-chloroethyl]-1-nitrosourea[BCNU] and cisplatin. Cell viability, cell proliferation, DNA fragmentation, nitrite level, and the expression of Bcl-2 and Bax were determined. Results : NO was markedly increased after treatment with SNP or SNAP; however, the addition of the anticancer drugs did not significantly affect NO production NO donors or anticancer drugs reduced glioma cell viability and, in combination, acted synergistically to further decrease cell viability in a dose- and time-dependent manner. Cell proliferation was inhibited and apoptosis were enhanced by combined treatment. Bax expression was increased by combined treatment, whereas Bcl-2 expression was reduced. The antitumor cytotoxicity of NO donors and anticancer drugs differed according to cell type. Conclusion : BCNU or cisplatin can inhibit cell viability and proliferation of glioma cells and can induce apoptosis. These effects are further enhanced by the addition of a NO donor which modulates the antitumor cytotoxicity of chemotherapy depending on cell type. Further biological, chemical, and toxicological studies of NO are required to clarify its mechanism of action in glioma.

Anti-Proliferative Activities of Vasicinone on Lung Carcinoma Cells Mediated via Activation of Both Mitochondria-Dependent and Independent Pathways

  • Dey, Tapan;Dutta, Prachurjya;Manna, Prasenjit;Kalita, Jatin;Boruah, Hari Prasanna Deka;Buragohain, Alak Kumar;Unni, Balagopalan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.409-416
    • /
    • 2018
  • Vasicinone, a quinazoline alkaloid from Adhatoda vasica Nees. is well known for its bronchodilator activity. However its anti-proliferative activities is yet to be elucidated. Here-in we investigated the anti-proliferative effect of vasicinone and its underlying mechanism against A549 lung carcinoma cells. The A549 cells upon treatment with various doses of vasicinone (10, 30, 50, $70{\mu}M$) for 72 h showed significant decrease in cell viability. Vasicinone treatment also showed DNA fragmentation, LDH leakage, and disruption of mitochondrial potential, and lower wound healing ability in A549 cells. The Annexin V/PI staining showed disrupted plasma membrane integrity and permeability of PI in treated cells. Moreover vasicinone treatment also lead to down regulation of Bcl-2, Fas death receptor and up regulation of PARP, BAD and cytochrome c, suggesting the anti-proliferative nature of vasicinone which mediated apoptosis through both Fas death receptors as well as Bcl-2 regulated signaling. Furthermore, our preliminary studies with vasicinone treatment also showed to lower the ROS levels in A549 cells and have potential free radical scavenging (DPPH, Hydroxyl) activity and ferric reducing power in cell free systems. Thus combining all, vasicinone may be used to develop a new therapeutic agent against oxidative stress induced lung cancer.

Fucoidan Induces Apoptosis in A2058 Cells through ROS-exposed Activation of MAPKs Signaling Pathway

  • Ryu, Yea Seong;Hyun, Jin Won;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.191-199
    • /
    • 2020
  • Fucoidan, a natural component of brown seaweed, has various biological activities such as anti-cancer activity, anti-oxidant, and anti-inflammatory against various cancer cells. However, the fucoidan has been implicated in melanoma cells via apoptosis signaling pathway. Therefore, we investigated apoptosis with fucoidan in A2058 human melanoma cells with dose- and time-dependent manners. In our results, A2058 cells viability decreased at relatively short-time and low-concentration through fucoidan. This effects of fucoidan on A2058 cells appeared to be mediated by the induction of apoptosis, as manifested by morphological changes through DNA-binding dye Hoechst 33342 staining. When a dose of 80 ㎍/mL fucoidan was treated, the cells were observed: crescent or ring-like structure, chromatin condensation, and nuclear fragmentation. With the increase at 100 ㎍/mL fucoidan, the cell membrane is intact throughout the total process, including membrane blebbing and loss of membrane integrity as well as increase of sub-G1 DNA. Furthermore, to understand the exact mechanism of fucoidan-treated in A2058 cells, western blotting was performed to detect apoptosis-related protein expression. In this study, Bcl-2 family proteins can be regulated by fucoidan, suggesting that fucoidan-induced apoptosis is modulated by intrinsic pathway. Therefore, expression of Bcl-2 and Bax may result in altered permeability, activating caspase-3 and caspase-9. And the cleaved form of poly ADP-ribose polymerase was detected in fucoidan-treated A2058 cells. These results suggest that A2058 cells are highly sensitive to growth inhibition by fucoidan via apoptosis, as evidenced by activation of extracellular signal-regulated kinases/p38/Bcl-2 family signaling, as well as alteration in caspase-9 and caspase-3.

Determination of Apoptosisin Granulosa-Luteal Cells Obtained from Hyperstimulated Human Ovaries (과배란 유도시 인간 난소로부터 얻어진 과립-황체화 세포의 자연세포사 검정)

  • 양현원
    • Development and Reproduction
    • /
    • v.1 no.1
    • /
    • pp.79-89
    • /
    • 1997
  • Recent studies have demonstrated that apoptotic cell death plays an important role in the mechanism underlying follicular atresia and luteolysis. However, the mechanisms responsible for initiating these processes have not been elucidated. In in vitro fertilization (IVF) programs, it is highly possible that continuous and repeated administration of FSH/hMG and GnRH agonists for the usage of ovarian hyperstimulation may induce apoptotic death of granulosa cells leading to atresia in the human ovarian follicles. The present study was performed to investigate whether FSH/hMG and GnRh agonists used for a longer period in controlled ovarian hyperstimulation has any effect on the apoptosis of granulosa-luteal (GL) cells obtained from hyperstimulated ovaries. To examine apoptotic cell death in the GL cells, cells were stained with acridie orange followed by observed in some of GL cells. Similar but distinct staining of apoptotic GL cells was observed when the cells were examined by using in situ TUNEL method. The healthy-looking cells with normal nuclear morphology were not stained, whereas cells with pyknotic nuclei or with apoptotic nuclei were intensively stained. After examining the ultrastructural features of GL cells by TEM, it was confirmed that the majority of cells seemed to have normal nuclei while GL cells undergoing apoptotic cel death were rarely found. The DNA extracted from GL cells showed a typical pattern of fragmentation following DNA electrophoretic analysis. We have confirmed that the apoptosis occurs in granulosa-luteal cells obtained from hyperstimulated ovaries. Technically, in situ apoptosis detection method is simple and reproducible and is well suited to identify the quality of oocytes retrieved from hyperstimulated ovaries.

  • PDF

An Adaptable Destination-Based Dissemination Algorithm Using a Publish/Subscribe Model in Vehicular Networks

  • Morales, Mildred Madai Caballeros;Haw, Rim;Cho, Eung-Jun;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.227-242
    • /
    • 2012
  • Vehicular Ad Hoc Networks (VANETs) are highly dynamic and unstable due to the heterogeneous nature of the communications, intermittent links, high mobility and constant changes in network topology. Currently, some of the most important challenges of VANETs are the scalability problem, congestion, unnecessary duplication of data, low delivery rate, communication delay and temporary fragmentation. Many recent studies have focused on a hybrid mechanism to disseminate information implementing the store and forward technique in sparse vehicular networks, as well as clustering techniques to avoid the scalability problem in dense vehicular networks. However, the selection of intermediate nodes in the store and forward technique, the stability of the clusters and the unnecessary duplication of data remain as central challenges. Therefore, we propose an adaptable destination-based dissemination algorithm (DBDA) using the publish/subscribe model. DBDA considers the destination of the vehicles as an important parameter to form the clusters and select the intermediate nodes, contrary to other proposed solutions. Additionally, DBDA implements a publish/subscribe model. This model provides a context-aware service to select the intermediate nodes according to the importance of the message, destination, current location and speed of the vehicles; as a result, it avoids delay, congestion, unnecessary duplications and low delivery rate.

Mechanism study on DNA damage and Apoptosis induced by heak shock using Comet Assay

  • Seo, Young-Rok;Han, Sung-Sik;Kim, L. O′Neill;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1997.12a
    • /
    • pp.101-101
    • /
    • 1997
  • Comet assay, single cell gel electrophoresis has been known as useful, rapid, simple, visual, and sensitive technique for measuring the DNA breakage in mammalian ce1ls. For evaluation of DNA damage using comet assay, early studies reported a change in comet length and intensity with DNA damage using simple visual technique, such as fluorescence microscopy with eyespiece. In recent, some workers are observing and analyzing nucleotide of comets using quantitative fluorescence image analysis system to estimate 'tail moment', which is defined as the product of the tail length and the fraction of total DNA in tail. Our laboratory also adopted the image analysis software for qualification. In addition, many of the practical features of comet assay render it potentially attractive as useful tool for molecular toxicology and carcinogenesis, because the system is already showing considerable promise as rapid predictor in both in vitro and in vivo experimental designs. Recently, the comet assay becomes a attractive technique to study of apoptosis, because apoptotic fragmentation of nuclear DNA into nucleosomal sizes can be evaluated by the comet assay. So, we attempted to apply the comet assay to studying the effect of various stress on the apoptosis-sensitive cell lines. Particularly, focusing on the hyperthermic apoptosis, we could find that heat shock(44˚C for 60 minutes) was sufficient to induced apoptosis in these cell lines. But using the highly sensitive comet assay, we could not detect DNA breaks immediately after heat shock.

  • PDF

Ginseng radix induces apoptosis in HL-60 cells and its mechanism as little relation with TNF-α production

  • Koo, Hyun-Na;Shin, Soon-Shik;Park, Jin-Han;Kim, Na-Hyung;Hong, Seung-Heon;Kim, Hyung-Min
    • Advances in Traditional Medicine
    • /
    • v.4 no.3
    • /
    • pp.171-178
    • /
    • 2004
  • Ginseng radix, the root of Panax ginseng C. A. Meyer (Araliaceae), is a medicinal plant used world-widely and has been reported to have various biological effects. To investigate the effects of Ginseng radix on HL-60 cell apoptosis, MTT assay, DNA fragmentation assay and flow cytometry were performed on HL-60 cells. Cells were treated with Ginseng radix at different concentrations $(10^{-4},\;10^{-3}\;and\;10^{-2};\;dilution\;rate)$. Ginseng radix significantly induced cells apoptosis with a time- and dose-dependent manner. To determine whether Ginseng radix-induced apoptosis is due to increase of tumor necrosis factor $(TNF-{\alpha})$ secretion, enzyme-linked immunosorbent assay was performed on HL-60 cells. Unexpectedly, Ginseng radix $(96\;{\pm}\;5\;pg/ml)$ significantly decreased the $TNF-{\alpha}$ secretion compared with control $(174\;{\pm}\;14\;pg/ml)$. Furthermore, Ginseng radix with $rIFN-{\gamma}$ synergistically increased nitric oxide production in mouse peritoneal macrophages. Taken together, our data indicate that Ginseng radix induce apoptosis on HL-60 cells without increase of $TNF-{\alpha}$ secretion and could be used for a supplementary remedy of cancer.

Mechanism Underlying Shikonin-induced Apoptosis and Cell Cycle Arrest on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line

  • Oh, Sang-Hun;Park, Sung-Jin;Yu, Su-Bin;Kim, Yong-Ho;Kim, In-Ryoung;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Shikonin, a major ingredient in the traditional Chinese herb Lithospermumerythrorhizon, exhibits multiple biological functions including antimicrobial, anti-inflammatory, and antitumor effects. It has recently been reported that shikonin displays antitumor properties in many cancers. This study was aimed to investigate whether shikonin could inhibit oral squamous carcinoma cell (OSCC) growth via mechanisms of apoptosis and cell cycle arrest. The effects of shikonin on the viability and growth of OSCC cell line, SCC25 cells were assessed by MTT assay and clonogenic assays, respectively. Hoechst staining and DNA electrophoresis indicated that the shikonin-treated SCC25 cells were undergoing apoptosis. Western blotting, immunocytochemistry, confocal microscopy, flow cytometry, MMP activity, and proteasome activity also supported the finding that shikonin induces apoptosis. Shikonin treatment of SCC25 cells resulted in a time- and dose-dependent decrease in cell viability, inhibition of cell growth, and increase in apoptotic cell death. The treated SCC25 cells showed several lines of apoptotic manifestation as follows: nuclear condensation; DNA fragmentation; reduced MMP and proteasome activity; decrease in DNA contents; release of cytochrome c into cytosol; translocation of AIF and DFF40 (CAD) onto the nuclei; a significant shift in Bax/Bcl-2 ratio; and activation of caspase-9, -7, -6, and -3, as well as PARP, lamin A/C, and DFF45 (ICAD). Shikonin treatment also resulted in down-regulation of the G1 cell cycle-related proteins and up-regulation of $p27^{KIP1}$. Taken together, our present findings demonstrate that shikonin strongly inhibits cell proliferation by modulating the expression of the G1 cell cycle-related proteins, and that it induces apoptosis via the proteasome, mitochondria, and caspase cascades in SCC25 cells.