• Title/Summary/Keyword: fragility assessment

Search Result 209, Processing Time 0.027 seconds

Development of an uncertainty quantification approach with reduced computational cost for seismic fragility assessment of cable-stayed bridges

  • Akhoondzade-Noghabi, Vahid;Bargi, Khosrow
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.385-401
    • /
    • 2022
  • Uncertainty quantification is the most important challenge in seismic fragility assessment of structures. The precision increment of the quantification method leads to reliable results but at the same time increases the computational costs and the latter will be so undesirable in cases such as reliability-based design optimization which includes numerous probabilistic seismic analyses. Accordingly, the authors' effort has been put on the development and validation of an approach that has reduced computational cost in seismic fragility assessment. In this regard, it is necessary to apply the appropriate methods for consideration of two categories of uncertainties consisting of uncertainties related to the ground motions and structural characteristics, separately. Also, cable-stayed bridges have been specifically selected because as a result of their complexity and the according time-consuming seismic analyses, reducing the computations corresponding to their fragility analyses is worthy of studying. To achieve this, the fragility assessment of three case studies is performed based on existing and proposed approaches, and a comparative study on the efficiency in the estimation of seismic responses. For this purpose, statistical validation is conducted on the seismic demand and fragility resulting from the mentioned approaches, and through a comprehensive interpretation, sufficient arguments for the acceptable errors of the proposed approach are presented. Finally, this study concludes that the combination of the Capacity Spectrum Method (CSM) and Uniform Design Sampling (UDS) in advanced proposed forms can provide adequate accuracy in seismic fragility estimation at a significantly reduced computational cost.

Wind-induced fragility assessment of protruding sign structures

  • Sim, Viriyavudh;Jung, WooYoung
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.381-392
    • /
    • 2020
  • Despite that the failure of sign structure may not have disastrous consequence, its sheer number still ensures the need for rigorous safety standard to regulate their maintenance and construction. During its service life, a sign structure is subject to extensive wind load, sometimes well over its permissible design load. A fragility analysis of a sign structure offers a tool for rational decision making and safety evaluation by using a probabilistic framework to consider the various sources of uncertainty that affect its performance. Wind fragility analysis was used to determine the performance of sign structure based on the performance of its connection components. In this study, basic wind fragility concepts and data required to support the fragility analysis of the sign structure such as sign panel's parameters, connection component's parameters, as well as wind load parameters were presented. Fragility and compound fragility analysis showed disparity between connection component. Additionally, reinforcement of the connection system was introduced as an example of the utilization of wind fragility results in the retrofit decision making.

Sensitivity of Seismic Response and Fragility to Parameter Uncertainty of Single-Layer Reticulated Domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1607-1616
    • /
    • 2018
  • Quantitatively modeling and propagating all sources of uncertainty stand at the core of seismic fragility assessment of structures. This paper investigates the effects of various sources of uncertainty on seismic responses and seismic fragility estimates of single-layer reticulated domes. Sensitivity analyses are performed to examine the sensitivity of typical seismic responses to uncertainties in structural modeling parameters, and the results suggest that the variability in structural damping, yielding strength, steel ultimate strain, dead load and snow load has significant effects on the seismic responses, and these five parameters should be taken as random variables in the seismic fragility assessment. Based on this, fragility estimates and fragility curves incorporating different levels of uncertainty are obtained on the basis of the results of incremental dynamic analyses on the corresponding set of 40 sample models generated by Latin Hypercube Sampling method. The comparisons of these fragility curves illustrate that, the inclusion of only ground motion uncertainty is inappropriate and inadequate, and the appropriate way is incorporating the variability in the five identified structural modeling parameters as well into the seismic fragility assessment of single-layer reticulated domes.

Seismic risk assessment of intake tower in Korea using updated fragility by Bayesian inference

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.317-326
    • /
    • 2019
  • This research aims to assess the tight seismic risk curve of the intake tower at Geumgwang reservoir by considering the recorded historical earthquake data in the Korean Peninsula. The seismic fragility, a significant part of risk assessment, is updated by using Bayesian inference to consider the uncertainties and computational efficiency. The reservoir is one of the largest reservoirs in Korea for the supply of agricultural water. The intake tower controls the release of water from the reservoir. The seismic risk assessment of the intake tower plays an important role in the risk management of the reservoir. Site-specific seismic hazard is computed based on the four different seismic source maps of Korea. Probabilistic Seismic Hazard Analysis (PSHA) method is used to estimate the annual exceedance rate of hazard for corresponding Peak Ground Acceleration (PGA). Hazard deaggregation is shown at two customary hazard levels. Multiple dynamic analyses and a nonlinear static pushover analysis are performed for deriving fragility parameters. Thereafter, Bayesian inference with Markov Chain Monte Carlo (MCMC) is used to update the fragility parameters by integrating the results of the analyses. This study proves to reduce the uncertainties associated with fragility and risk curve, and to increase significant statistical and computational efficiency. The range of seismic risk curve of the intake tower is extracted for the reservoir site by considering four different source models and updated fragility function, which can be effectively used for the risk management and mitigation of reservoir.

A reliability-based fragility assessment method for seismic pounding between nonlinear buildings

  • Liu, Pei;Zhu, Hai-Xin;Fan, Peng-Peng;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.19-35
    • /
    • 2021
  • Existing methods to estimate the probability of seismic pounding occurrence of adjacent buildings do not account for nonlinear behavior or only apply to simple lumped mass systems. The present study proposes an efficient method based on subset simulation for fragility and risk assessment of seismic pounding occurrence between nonlinear adjacent buildings neglecting pounding effects with application to finite element models. The proposed method is first applied to adjacent buildings modeled as elastoplastic systems with substantially different dynamic properties for different structural parameters. Seismic pounding fragility and risk of adjacent frame structures with different floor levels is then assessed, paying special attention to modeling the non-linear material behavior in finite element models. Difference in natural periods and impact location are identified to affect the pounding fragility simultaneously. The reliability levels of the minimum code-specified separation distances are also determined. In addition, the incremental dynamic analysis method is extended to assess seismic pounding fragility of the adjacent frame structures, resulting in higher fragility estimates for separation distances larger than the minimum code-specified ones in comparison with the proposed method.

Probabilistic seismic risk assessment of simply supported steel railway bridges

  • Yilmaz, Mehmet F.;Caglayan, Barlas O.;Ozakgul, Kadir
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.91-99
    • /
    • 2019
  • Fragility analysis is an effective tool that is frequently used for seismic risk assessment of bridges. There are three different approaches to derive a fragility curve: experimental, empirical and analytical. Both experimental and empirical methods to derive fragility curve are based on past earthquake reports and expert opinions which are not suitable for all bridges. Therefore, analytical fragility analysis becomes important. Nonlinear time history analysis is commonly used which is the most reliable method for determining probabilistic demand models. In this study, to determine the probabilistic demand models of bridges, time history analyses were performed considering both material and geometrical nonlinearities. Serviceability limit states for three different service velocities were considered as a performance goal. Also, support displacements, component yielding and collapse limits were taken into account. Both serviceability and component fragility were derived by using maximum likely hood methods. Finally, the seismic performance and critical members of the bridge were probabilistically determined and clearly presented.

Seismic Risk Assessment of Bridges Using Fragility Analysis (지진취약도분석을 통한 교량의 지진위험도 평가)

  • Yi, Jin-Hak;Youn, Jin-Yeong;Yun, Chung-Bang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.31-43
    • /
    • 2004
  • Seismic risk assessment of bridge is presented using fragility curves which represent the probability of damage of a structure virsus the peak ground acceleration. In theseismic fragility analysis, the structural damage is defined using the rotational ductility at the base of the bridge pier, which is obtained through nonlinear dynamic analysis for various input earthquakes. For the assessment of seismic risk of bridge, peak ground accelerations are obatined for various return periods from the seismic hazard map of Korea, which enables to calculate the probability density function of peak ground acceleration. Combining the probability density function of peak ground acceleration and the seismic fragility analysis, seismic risk assessment is performed. In this study, seismic fragility analysis is developed as a function of not the surface motion which the bridge actually suffers, but the rock outcrop motion which the aseismic design code is defined on, so that further analysis for the seismic hazard assessment may become available. Besides, the effects of the friction pot bearings and the friction pendulum bearings on the seismic fragility and risk analysis are examined. Lastly, three regions in Korea are considered and compared in the seismic risk assessment.

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.

Fragility assessment for electric cabinet in nuclear power plant using response surface methodology

  • Tran, Thanh-Tuan;Cao, Anh-Tuan;Nguyen, Thi-Hong-Xuyen;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.894-903
    • /
    • 2019
  • An approach for collapse risk assessment is proposed to evaluate the vulnerability of electric cabinet in nuclear power plants. The lognormal approaches, namely maximum likelihood estimation and linear regression, are introduced to establish the fragility curves. These two fragility analyses are applied for the numerical models of cabinets considering various boundary conditions, which are expressed by representing restrained and anchored models at the base. The models have been built and verified using the system identification (SI) technique. The fundamental frequency of the electric cabinet is sensitive because of many attached devices. To bypass this complex problem, the average spectral acceleration $S_{\bar{a}}$ in the range of period that cover the first mode period is chosen as an intensity measure on the fragility function. The nonlinear time history analyses for cabinet are conducted using a suite of 40 ground motions. The obtained curves with different approaches are compared, and the variability of risk assessment is evaluated for restrained and anchored models. The fragility curves obtained for anchored model are found to be closer each other, compared to the fragility curves for restrained model. It is also found that the support boundary conditions played a significant role in acceleration response of cabinet.