• Title/Summary/Keyword: fragile X mental retardation

Search Result 15, Processing Time 0.025 seconds

Fragile X Mental Retardation Protein in Learning-Related Synaptic Plasticity

  • Mercaldo, Valentina;Descalzi, Giannina;Zhuo, Min
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.501-507
    • /
    • 2009
  • Fragile X syndrome (FXS) is caused by a lack of the fragile X mental retardation protein (FMRP) due to silencing of the Fmr1 gene. As an RNA binding protein, FMRP is thought to contribute to synaptic plasticity by regulating plasticity-related protein synthesis and other signaling pathways. Previous studies have mostly focused on the roles of FMRP within the hippocampus - a key structure for spatial memory. However, recent studies indicate that FMRP may have a more general contribution to brain functions, including synaptic plasticity and modulation within the prefrontal cortex. In this brief review, we will focus on recent studies reported in the prefrontal cortex, including the anterior cingulate cortex (ACC). We hypothesize that alterations in ACC-related plasticity and synaptic modulation may contribute to various forms of cognitive deficits associated with FXS.

DNA testing for fragile X syndrome in school for severely emotionally handicapped children in Korea

  • Hong, Sung-Do David;Lee, So-Young;Oh, Myung-Ryurl;Jin, Dong-Kyu
    • Journal of Genetic Medicine
    • /
    • v.2 no.2
    • /
    • pp.83-86
    • /
    • 1998
  • Though Fragile X syndrome is one of the most common inherited causes of mental retardation, it is not much detected yet in Korean population. One of the reason may be that the syndrome is not well known to the special education teachers as well as to the clinicians in this country. Thus, molecular test was undertaken to screen out fragile X syndrome in 122 children of two Korean schools for emotionally severely handicapped children. The subjects were all boys, previously known as having pervasive developmental disorder with or without mental retardation. Southern blot analysis of peripheral blood showed the abnormally enlarged (CGG)n repeat sequence associated with fragile X syndrome in two children. This finding suggests that the DNA testing for fragile X syndrome is warranted for Korean high risk population and that more concern about this syndrome is needed for the professionals who work for mentally handicapped children. The issues involved in genetic counseling for fragile X syndrome are discussed.

  • PDF

CYTOGENETIC ANALYSIS OF CHILDREN WITH AUTISM (자폐장애 환자의 세포유전학적 분석)

  • Jung, Chul-Ho;Lee, Je-Young;Park, Young-Nam;Park, Jong-Han;Kim, Jung-Bum;Kim, Jae-Ryong;Chun, Hyo-Jin
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.108-117
    • /
    • 1994
  • Twenty nine children with autism and thirty children with mental retardation were examined for association between autism and chromosomal disorders including fragile X. The peripheral blood was cultured in Medium 199 with methotrexate and without methorexate for 70 hours. Thirty metaphase cells in each case were karyotyped in all samples. Chromosomal abnormalities were found in 11 cases(37.9%) of autistic disorder and 10 cases (33.3%) of mental retardation, but in none of fragile(X)(q27.3) from all cases. Chromosomal abnormalities were present on group A, C, D and X in autistic disorder and on group A, B, C, D, E and X in mental retardation. No specific chromosomal region was found in both autistic disorder and mental retardation. Types of chromosomal disorders were only fragile and/or gap but no numerical abnormality was present in all cases. Number of cells which revealed fragile sites were 31 cells(3.6%) out of 870 cells in autistic disorder and 29 cells(3.2%) out of 900 cells in mental retardation Number of cells which revealed gaps were 43 cells(4.9%) out of 870 cells in autistic disorder and 35 cells(3.9%) out of 900 cells in mental retardation. Autistic disorder may not be directly correlated with fragile X but with nonspecific chromosomal breakages from these data.

  • PDF

Altered Translational Control of Fragile X Mental Retardation Protein on Myelin Proteins in Neuropsychiatric Disorders

  • Jeon, Se Jin;Ryu, Jong Hoon;Bahn, Geon Ho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2017
  • Myelin is a specialized structure of the nervous system that both enhances electrical conductance and insulates neurons from external risk factors. In the central nervous system, polarized oligodendrocytes form myelin by wrapping processes in a spiral pattern around neuronal axons through myelin-related gene regulation. Since these events occur at a distance from the cell body, post-transcriptional control of gene expression has strategic advantage to fine-tune the overall regulation of protein contents in situ. Therefore, many research interests have been focused to identify RNA binding proteins and their regulatory mechanism in myelinating compartments. Fragile X mental retardation protein (FMRP) is one such RNA binding protein, regulating its target expression by translational control. Although the majority of works on FMRP have been performed in neurons, it is also found in the developing or mature glial cells including oligodendrocytes, where its function is not well understood. Here, we will review evidences suggesting abnormal translational regulation of myelin proteins with accompanying white matter problem and neurological deficits in fragile X syndrome, which can have wider mechanistic and pathological implication in many other neurological and psychiatric disorders.

Fragile-X Mental Retardation: Molecular Diagnosis in Argentine Patients

  • Florencia, Giliberto;Irene, Szijan;Veronica, Ferreiro
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.766-773
    • /
    • 2006
  • Fragile-X-syndrome (FXS) is the most common type of inherited cognitive impairment. The underlying molecular alteration consists of a CGG-repeat amplification within the FMR-1 gene. The phenotype is only apparent once a threshold in the number of repeats has been exceeded (full mutation). The aim of this study was to characterize the FMR-1 CGG-repeat status in Argentine patients exhibiting mental retardation. A total of 330 blood samples from patients were analyzed by PCR and Southern blot analysis. Initially, DNA from 78 affected individuals were studied by PCR. Since this method is unable to detect high molecular weight alleles, however, we undertook a second approach using the Southern blotting technique to analyze the CGG repeat number and methylation status. Southern blot analysis showed an altered pattern in 14 out of 240 (6%) unrelated patients, with half of them presenting a mosaic pattern. Eight out of 17 families (47%) showed a (suggest deleting highlight). The characteristic FXS pattern was identified in 8/17 families (47%), and in 4 of these families 25% of the individuals presented with a mosaic model. The expansion from pre-mutation to full mutation was shown to occur both at the pre and post zygotic levels. The detection of FXS mutations has allowed us to offer more informed genetic counseling, prenatal diagnosis and reliable patient follow-up.

Diagnosis of Fragile X Syndrome by Antibody Test (항체 검사에 의한 Fragile X 증후군의 진단)

  • 김강영;윤인숙;김종봉;진동규
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.704-708
    • /
    • 1999
  • This research was carried out for evaluating diagnostic value of antibody test in Fragile X syndrome. In antibody test of control individuals and carriers with a premutation, FMRP were detected in the lymphocytes, whereas the lymphocytes of male Fragile X syndrome patients were devoid of FMRP. Five Fragile X syndrome male patient, two Fragile X syndrome female patients, three carriers were diagnosed by southern blot. Five boys who were diagnosed as the patients by antibody test were turned out full mutation and having multiple smear beside normal single band. However, fragile site of X chromosome was not expressed in Fragile X syndrome patients by chromosome analysis. These results showed that antibody test was a fast and simple method, but the diagnostic power was "perpect" for males, whereas the results were less specific for females.r females.

  • PDF

Ataxin-2 Dysregulation Triggers a Compensatory Fragile X Mental Retardation Protein Decrease in Drosophila C4da Neurons

  • Cha, In Jun;Lee, Davin;Park, Sung Soon;Chung, Chang Geon;Kim, Seung Yeon;Jo, Min Gu;Kim, Seung Yeol;Lee, Byung-Hoon;Lee, Young-Sam;Lee, Sung Bae
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.870-879
    • /
    • 2020
  • Dendrites require precise and timely delivery of protein substrates to distal areas to ensure the correct morphology and function of neurons. Many of these protein substrates are supplied in the form of ribonucleoprotein (RNP) complex consisting of RNA-binding proteins (RBPs) and mRNAs, which are subsequently translated in distal dendritic areas. It remains elusive, however, whether key RBPs supply mRNA according to local demands individually or in a coordinated manner. In this study, we investigated how Drosophila sensory neurons respond to the dysregulation of a disease-associated RBP, Ataxin-2 (ATX2), which leads to dendritic defects. We found that ATX2 plays a crucial role in spacing dendritic branches for the optimal dendritic receptive fields in Drosophila class IV dendritic arborization (C4da) neurons, where both expression level and subcellular location of ATX2 contribute significantly to this effect. We showed that translational upregulation through the expression of eukaryotic translation initiation factor 4E (eIF4E) further enhanced the ATX2-induced dendritic phenotypes. Additionally, we found that the expression level of another disease-associated RBP, fragile X mental retardation protein (FMRP), decreased in both cell bodies and dendrites when neurons were faced with aberrant upregulation of ATX2. Finally, we revealed that the PAM2 motif of ATX2, which mediates its interaction with poly(A)-binding protein (PABP), is potentially necessary for the decrease of FMRP in certain neuronal stress conditions. Collectively, our data suggest that dysregulation of RBPs triggers a compensatory regulation of other functionally-overlapping RBPs to minimize RBP dysregulation-associated aberrations that hinder neuronal homeostasis in dendrites.

Fragile X Syndrome and it's Association with Autism (약체X염색체 증후군과 자폐증과의 연관)

  • Yang, Moon-Bong
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.147-157
    • /
    • 1992
  • The fragile X syndrome, which is considered to be synonymous with the Martin-Bell syndrome, is a relatively common form of X-linked mental retardation. The syndrome seems to occure in many different ethnic groups and its prevalence among mentally retarded males has been estimated to be in the order of 2 to 6%. The karyotypic hallmark of the syndrome is made up with a pronounced constriction near each tip of the long arm of the X chromosome(fragile site), shown in vitro only under conditions in which thymidylate production is blocked(lowered folate levels). Special culture media are needed to demonstrate this constriction site. Major clinical features associated with the syndrome include macroorchidism, large or prominent ears, significant emotional and behavioral dysfunctions such as hyperactivity, self-injury, lack of eye contact and social interaction, schizophrenia, autism, etc., and speech and language dysfunctions ranging from nonverbal to verbal speech with moderate to severe expressive language delays. Some have minor clinical features in common such as an increase in birth weight high forehead, prognathism, increased head circumference in infancy and childhood which did not persist into adult life. The recent research findings have shown that the fragile X syndrome is associated with infantile autism. Many patients with the fragile X syndrome fulfill the diagnostic criteria for infantile autism. Therefore it is recommendable that any patient with developmental delays and autism or autistic manifestations should have a chromosomal analysis, including fragile X examination. In the present review, historical aspects, incidence, and clinical features are presented. Recent anecdotal reports of the association with autism and the clinical improvement following high dose folic acid treatment will be discussed.

  • PDF

MOLECULAR BIOLOGIC ANALYSIS OF FMR-1 GENE TRINUCLEOTIDE REPEATS IN AUTISTIC PATIENTS (자폐장애 환자에서 FMR-1 유전 삼염기 반복의 분자생물학적 분석)

  • Kwak, Ho-Soon;Chun, Hyo-Jin;Chang, Eun-Jin;Kim, Hee-Cheol;Kim, Jung-Bun;Park, Young-Nam;Jung, Chul-Ho
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.11 no.1
    • /
    • pp.3-15
    • /
    • 2000
  • Objectives:There has been a rapid expansion of studies aimed at elucidating the genetic basis of autistic disorder, especially it’ relationship to fragile-X syndrome. The detection of fragile X chromosome(Xq27.3) by cytogenetic analysis has revealed many difficulties in testing. Therefore, to explore the relationship between autistic disorder and fragile X syndrome, this study administered molecular biologic methods which examined an unstable CGG repeat within the fragile X mental retardation-1(FMR-1) gene. Methods:Ninety nine autistic children and eight normal control children were tested. The number of CGG repeats within FMR-1 gene was measured after amplification by PCR, and cytogenetic analysis was also carried out to detect fragile site Xq27.3. Southern blot hybridization, using StB12.3 and/or Pfxa3 probe, was done for the patients showing expansion of more than 50 CGG repeats (premutation). Results:All but two autistic patients had no expansion in CGG repeats by PCR and there was no significant statistical difference in number of CGG repeat in comparison with normal control. Two autistic patients, considered as premutation by PCR analysis, had no full mutation or premutation by Southern blot hybridization. All autistic children tested did not have any abnormal karyotype or fragile site Xq27.3. Conclusions:These results suggest that autistic patients may not have abnormality in FMR-1 gene or abnormal expansion in CGG repeat. In conclusion, fragile X syndrome may not be antecedent of autistic disorder.

  • PDF